Genetic Resources and Crop Evolution

, Volume 54, Issue 2, pp 359–377 | Cite as

Genetic Structure of Lycopersicon pimpinellifolium (Solanaceae) Populations Collected after the ENSO Event of 1997–1998

  • A. Sifres
  • B. Picó
  • J. M. Blanca
  • R. De Frutos
  • F. Nuez


The greatest extent of genetic variation and outcrossing for Lycopersicon pimpinellifolium occurs in northern Peru. This is also the area most affected by EI Niño Southern Oscillation (ENSO). Using morphological and the molecular markers SSRs and AFLPs, we studied the genetic structure of L. pimpinellifolium populations collected after the ENSO event of 1997–1998. This was the most intense in the last century and caused a vast increase in the size of L. pimpinellifolium populations. Populations in the area surveyed were not regionally differentiated. We did not find any cline or eco-geographic association for genetic diversity, and positive correlations between genetic and geographic distances were found only at very short distances. Flooding and water streams caused by ENSO might have facilitated a periodical seed migration from distant areas. Gene flow between populations could then occur, facilitated by the increase in the population sizes of plants and pollinators and by the high levels of stigmatic exsertion. Results revealed a significant lack of heterozygotes in comparison with those expected in a panmictic population without consanguinity. A high degree of endogamy was found in all populations. In this context, endogamy can be explained by the occurrence of crosses between relatives rather than by autogamy. In an area intensely disturbed by ENSO, we found a population that had not been reported by earlier collectors in this region. This yellow-fruited population remained morphologically and molecularly differentiated from all L. pimpinellifolium and L. esculentum populations analyzed.


AFLPs ENSO Genetic structure Lycopersicon pimpinellifolium Northern Peru SSRs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.E. Alvarez, C.C.M. van de Wiel, M.J.M. Smulders and B. Vosman, Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor. Appl. Genet. 103 (2001) 1283-1292CrossRefGoogle Scholar
  2. T. Areshchenkova and M.W. Ganal, Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet. 104 (2002) 229-235CrossRefPubMedGoogle Scholar
  3. P. Arens, P. Odinot, A.W. van Exuden, P. Lindhout and B. Vosman, GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome 38 (1995) 84-90PubMedGoogle Scholar
  4. E. Baudry, C. Kerdelhue, H. Innan and W. Stephan, Species and recombination effects on DNA variability in the tomato genus. Genetics 158 (2001) 1725-1735PubMedGoogle Scholar
  5. K. Belkhir, P. Borsa, L. Chikhi, N. Ranfaste and T. Bonhomme, Genetix.4.04. Logiciel sous windowsTM pour la genetiqué des populations. Montpellier: Laboratoire GénomePopulations, Interactions, Université de Montpellier II (1996–2002).Google Scholar
  6. G. Bonnema, P. van der Berg and P. Lindhout, AFPLs mark different genomic regions compared with RFLPs: a case study in tomato. Genome 45 (2002) 217-221CrossRefPubMedGoogle Scholar
  7. G.M.M. Bredemeijer, R.J. Cooke, M.W. Ganal, R. Peeters, P. Isaac, Y. Noordijk, S. Rendell, J. Jackson, M. S. Röder, K. Wendehake, M. Dijcks, M. Amelaine, V. Wickaert, L. Bertrand and B. Vosman, Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor. Appl. Genet. 105 (2002) 1019-1026PubMedCrossRefGoogle Scholar
  8. P. Broun and S.D. Tanksley, Characterization and genetic mapping of single repeat sequences in the tomato genome. Mol. Gen. Genet. 250 (1996) 39-49PubMedCrossRefGoogle Scholar
  9. L.L. Cavalli-Sforza and A.W.F. Edwards, Phylogenetic analysis: models and estimation procedures. Evolution 32 (1967) 550-570CrossRefGoogle Scholar
  10. A.H. Del Rio and J.B. Bamberg, Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Amer. J. Potato Res. 79 (2002) 335-338CrossRefGoogle Scholar
  11. L.R. Dice, Measures of the amount of ecologic association between species. Ecology 26 (1945) 297-302CrossRefGoogle Scholar
  12. R.A. Ennos, Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72 (1994) 250-259Google Scholar
  13. B. Escofier and J. Pagés, Analyses factorielles simples et multiples. Paris: Dumond (1990).Google Scholar
  14. M. Ferriol, B. Picó and F. Nuez, Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107 (2003) 271-282CrossRefPubMedGoogle Scholar
  15. L. Galiana-Balaguer, S. Roselló, J.M. Herrero-Martínez, A. Maqueira and F. Nuez, Determination of L-ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis. Anal. Biochem. 296 (2001) 218-224CrossRefPubMedGoogle Scholar
  16. M.S. Georgiady, R.M. Whitkus and E.M. Lord, Genetic analysis of traits distinguishing outcrossing and self- pollinating forms of currant tomatoLycopersicon pimpinellifolium (Juss.) Mill. Genetics 161 (2002) 333-344PubMedGoogle Scholar
  17. J.P.W. Haanstra, C. Wye, H. Verbakel, F. Meijer-Dekens, P. Berg Van den, P. Odinot, A.W. Van Exuden, S. Tanksley, P. Lindhout and J. Peleman, An integrated high-density RFLP–AFLP map of tomato based on two Lycopersicon esculentum×L. pennellii F2 populations. Theor. Appl. Genet. 99 (1999) 254-271CrossRefGoogle Scholar
  18. C. He, V. Poysa and K. Yu, Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationship among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106 (2003) 363-373PubMedGoogle Scholar
  19. M. Holle, C.M. Rick and D.G. Hunt, Catalog of collections of green-fruited Lycopersicon species and Solanum pennellii found in watersheds of Peru. TGC Report 28 (1978) 50-78Google Scholar
  20. Descriptors for tomato (Lycopersicon). Rome: International Plant Genetic Resources Institute (1996).Google Scholar
  21. S. Jaramillo and M. Baena, Material de apoyo a la capacitación en conservación ex situ de recursos fitogenéticos. Cali: Instituto Internacional de Recursos Fitogenéticos (2000).Google Scholar
  22. N. Mantel, The detection of disease clustering and a generalized regression approach. Cancer Res. 27 (1967) 209-220PubMedGoogle Scholar
  23. J.A. Marshall, S. Knapp, M.R. Davey, J.B. Power, E.C. Cocking, M.D. Bennett and A.V. Cox, Molecular systematics of Solanum section Lycopersicon (Lycopersicon) using the nuclear ITS rDNA region. Theor. Appl. Genet. 103 (2001) 1216-1222CrossRefGoogle Scholar
  24. Matthiolus P.A. 1544. Di Pedacio Dioscoride Anarzabeo libri cinque della historia et material medicinale trodotte in lingua volgare Italiana. Venice.Google Scholar
  25. C.E. McGregor, R. Treuren van, R. Hoekstra and T.J.L. van Hintum, Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor. Appl. Genet. 104 (2002) 146-156CrossRefPubMedGoogle Scholar
  26. J.C. Miller and S.D. Tanksley, RFLP analysis of phylogenetic relationships and genetics variation in the genus Lycopersicon. Theor. Appl. Genet. 80 (1990) 437-448Google Scholar
  27. C. H. Muller, A revision of the genus Lycopersicon. USDA Misc. Publication 382 (1940) 29Google Scholar
  28. M. Nei, Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70 (1973) 3321-3323PubMedCrossRefGoogle Scholar
  29. M. Nei, F-statistic and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41 (1977) 225-233PubMedGoogle Scholar
  30. F. Nuez, J. Prohens and J.M. Blanca, Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am. J. Bot. 91 (2004) 86-99Google Scholar
  31. C.M. Rick and R.T. Chetelat, Utilization of related wild species for tomato improvement. Acta Hortic. 412 (1995) 21-38Google Scholar
  32. C.M. Rick and M. Holle, Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ. Bot. 44 (1990) 69-78Google Scholar
  33. C.M. Rick, J.F. Fobes and M. Holle, Genetic variation in Lycopersicon pimpinellifolium. Evidence of evolutionary change in mating systems. Plant Syst. Evol. 127 (1977) 139-170CrossRefGoogle Scholar
  34. C.M. Rick, M. Holle and R.W. Thorp, Rates of cross-pollination in Lycopersicon pimpinellifolium: Impact of genetic variation in floral characters. Plant Syst. Evol 129 (1978) 31-44CrossRefGoogle Scholar
  35. C.M. Rick, H. Laterrot and J. Philouze, A revised key for the Lycopersicon species. TGC Report 40 (1990) 31Google Scholar
  36. F.J. Rohlf, NTSYS-pc: numerical taxonomy and multivariate analysis systemversion 2.0, user guide. New York: Exeter Software (1998).Google Scholar
  37. V. Saliba-Colombani, M. Causse, L. Gervais and J. Philouze, Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43 (2000) 29-40CrossRefPubMedGoogle Scholar
  38. P.E. Smouse and R. Peakall, Spatial autocorrelation analysis of the individual multiallele and multilocus genetic structure. Heredity 82 (1999) 561-573CrossRefPubMedGoogle Scholar
  39. M.J.M. Smulders, G. Bredemeijer, W. Rus-Kortekaas, P. Arens and B. Vosman, Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 97 (1997) 264-272CrossRefGoogle Scholar
  40. D.M. Spooner, I.E. Peralta and S. Knapp, Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54 (2005) 43-61CrossRefGoogle Scholar
  41. N. Takezaki and M. Nei, Genetic distances and reconstruction of phylogenetics trees from microsatellites DNA. Genetics 144 (1996) 389-399PubMedGoogle Scholar
  42. I.B. Taylor, Biosystematics of the tomato. In: J.G. Atherton and J. Ridich (eds.) The Tomato Crop. A Scientific Basis for Improvement. London and New York: Chapman and Hall (1986) pp. 1-34Google Scholar
  43. Guidelines for the conduct of tests for distinctness, homogeneity and stability. Tomato (Lycopersicon lycopersicum (L.) Karst. ex Farw.). Geneva: UPOV (1976).Google Scholar
  44. J. Villand, P.W. Skroch, T. Lai, P. Hanson, C.G. Kuo and J. Nienhuis, Genetic variation among tomato accessions from primary and secondary centres of diversity. Crop Sci. 38 (1998) 1339-1347CrossRefGoogle Scholar
  45. S.J. Warnock, Natural habitats of Lycopersicon species. HortScience 26 (1991) 446-471Google Scholar
  46. B.S. Weir and C.C. Cockerham, Estimating F-statistics for the analysis of population structure. Evolution 38 (1984) 1358-1370CrossRefGoogle Scholar
  47. M.P. Widrlechner, Variation in the breeding system of Lycopersicon pimpinellifolium: implication for germplasm maintenance. Plant Gen. Res. Newsl. 70 (1987) 38-43Google Scholar
  48. C.E. Williams and D.A. St Clair, Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of L. esculentum. Genome 36 (1993) 619-630PubMedGoogle Scholar
  49. The 1997–98 El Niño: a scientific and technical retrospective. Geneva: WMO No. 905 (1999).Google Scholar
  50. F.C. Yeh, R.C. Yang, T.B.J. Boyle, Z.H. Ye and J.X. Mao, POPGENEthe user-friendly shareware for population genetic analysis. Alberta: Molecular Biology and Biotechnology CentreUniversity of Alberta (1997).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Sifres
    • 1
  • B. Picó
    • 1
  • J. M. Blanca
    • 1
  • R. De Frutos
    • 1
  • F. Nuez
    • 1
  1. 1.Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations