Genetic Resources and Crop Evolution

, Volume 54, Issue 2, pp 327–336 | Cite as

Phylogeography of the Bitter Apple, Citrullus Colocynthis

Article

Abstract

Citrullus colocynthis is a desert plant with a rich history as an important medicinal plant and as a source of valuable oil. Its small seeds appear in several early Egyptian, Lybian and Near Eastern sites from about 4000 BC. Sequence information deduced from several polymorphic intergenic cpDNA regions and a relatively large intron (0.6 kb) at the transit sequence of single-copy nuclear gene G3pdh showed clear geographical structure among C. colocynthis accessions. Region specific haplotypes with different nucleotide substitution rates were observed. The highest number of substitution events occurred in C. colocynthis selections from India and Pakistan, the lowest number in accessions from the Middle Eastern and West Asian region (Iran, Israel, and Afghanistan). Population level variation at the noncoding cpDNA and G3pdh intron are congruent. Indels at two cpDNA regions and unique nuclear and cpDNA substitutions indicate the direction of migration from the African continent into the Middle East and the Far East. C. colocynthis collected in Australia showed the highest sequence homology with accessions from Cyprus and Morocco. Divergent lineages are restricted to portions of the species range. Possible causes of this pattern include restricted migration and gene flow between regions, and differences in population size of divergent haplotypes based on differential patterns of environmental adaptation.

Keywords

Bitter apple Citrullus colocynthis Colocynth Colonization routes cpDNA Phylogeography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Avise, Phylogeography. Cambridge, Massachusetts: Harvard University Press (2000).Google Scholar
  2. M. Clement, D.P. Posada and K.A. Crandall, TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9 (2000) 1657-1659CrossRefPubMedGoogle Scholar
  3. F. Dane, Chloroplast DNA investigations in Citrullus using PCR-RFLP analysis. In: D.N. Maynard (ed.) Cucurbitaceae 2002. Alexandria, Virginia: ASHS Press (2002) pp. 100-108Google Scholar
  4. F. Dane, P. Lang and R. Bakhtiyarova, Comparative analysis of chloroplast DNA variability in wild and cultivated Citrullus species. Theor. Appl. Genet. 108 (2004) 958-966CrossRefPubMedGoogle Scholar
  5. F. Dane and P. Lang, Comparative analysis of cpDNA variability in wild and cultivated Citrullus species: implications for evolution of watermelon. Am. J. Bot. 91 (2004) 1922-1929Google Scholar
  6. J.J. Doyle, J.I. Davis, R.I. Soreng, D. Garvin and M.J. Anderson, Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. USA 89 (1992) 7722-7726PubMedCrossRefGoogle Scholar
  7. S. Dumolin-Lapegue, B. Demesure, S. Fineschi, V. Le Corre and R.J. Petit, Phylogeographic structure of white oaks throughout the European continent. Genetics 146 (1997) 1475-1487PubMedGoogle Scholar
  8. N.C. Ellstrand, H.C. Prentice and J.F. Hancock, Gene flow and introgression from domesticated plants into their wild relatives. Ann. Rev. Ecol. Syst. 30 (1999) 539-563CrossRefGoogle Scholar
  9. A. Eyre-Walker, R.L. Gaut, H. Hilton, D.L. Feldman and B.S. Gaut, Investigation of the bottleneck leading to the domestication of maize. Proc. Natl. Acad. Sci. USA 95 (1998) 4441-4446CrossRefPubMedGoogle Scholar
  10. S.W. Graham, P.A. Reeves, A.C.E. Burns and R.G. Olmstead, Microstructural changes in noncoding chloroplast DNA: interpretation, evolution and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Plant Sci. 161 (2000) S83-S96CrossRefGoogle Scholar
  11. M.J. Havey, J.D. McCreight, B. Rhodes and G. Taurick, Differential expression of the Cucumis organellar genomes. Theor. Appl. Genet. 97 (1998) 122-128CrossRefGoogle Scholar
  12. Heinze B. 2002. Chloroplast DNA primers. http://fbva.forvie. ac.at/200/1892.html.Google Scholar
  13. M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge, UK: Cambridge University Press (1983).Google Scholar
  14. S. Kumar, K. Tamura, I.B. Jacobsen and M. Nei, MEGA2: Molecular Evolutionary Genetic Analysis Software. Tempe, Arizona: Arizona State University (2001).Google Scholar
  15. M.-F. Liaud, D.X. Zhang and R. Cerff, Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3 phosphate dehydrogenase genes to the nucleus. Proc. Natl. Acad. Sci. USA 87 (1990) 8918-8922PubMedCrossRefGoogle Scholar
  16. A. Mohanty, J.P. Martin and I. Aguinagalde, A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity 87 (2001) 421-427CrossRefPubMedGoogle Scholar
  17. P.L. Morrell, K.E. Lundy and M.T. Clegg, Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc. Natl. Acad. Sci. USA 100 (2003) 10812-10817CrossRefPubMedGoogle Scholar
  18. M. Nei and S. Kumar, Molecular Evolution and Phylogenetics. New York: Oxford University Press, Inc. (2000).Google Scholar
  19. K. O’Donnell, Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr. Genet. 22 (1992) 213-220PubMedCrossRefGoogle Scholar
  20. T. Ohta, Near-neutrality in evolution of genes and gene regulation. Proc. Natl. Acad. Sci. USA 99 (2002) 16134-16137CrossRefPubMedGoogle Scholar
  21. K.M. Olsen and M.D. Purugganan, Molecular evolution on the origin and evolution of glutinous rice. Genetics 162 (2002) 941-950PubMedGoogle Scholar
  22. K.M. Olsen and B.A. Schaal, Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA 96 (1999) 5586-5591CrossRefPubMedGoogle Scholar
  23. J. Petersen, H. Brinkmann and R. Cerff, Origin, evolution and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids. J. Mol. Evol. 57 (2003) 16-26CrossRefPubMedGoogle Scholar
  24. R.W. Robinson and D.S. Decker-Walters, Cucurbits. New York: CAB International (1997).Google Scholar
  25. T. Sang, Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Rev. Biochem. Mol. Biol. 37 (2002) 121-147CrossRefGoogle Scholar
  26. O.I. Sanjur, D.R. Piperno, T.C. Andres and L. Wessel-Beaver, Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Natl. Acad. Sci. USA 99 (2002) 535-540CrossRefPubMedGoogle Scholar
  27. B.A. Schaal and K.M. Olsen, Gene genealogies and population variation in plants. In: F.J. Ayala, W.M. Fitch and M.T. Clegg (eds.) Variation and Evolution in Plants and Microorganisms. Washington, DC: National Academy Press (2000) pp. 235-251Google Scholar
  28. D.E. Soltis, P.S. Soltis and J.J. Doyle, Molecular Systematics of Plants II. DNA Sequencing. Boston, Massachusetts: Kluwer Academic Publishers (1998).Google Scholar
  29. D.L. Swofford, PAUP* Phylogenetic Analysis Using Parsimony (and*Other Methods). Sunderland, Massachusetts: Sinauer Associates (2002).Google Scholar
  30. A.R. Templeton, Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7 (1998) 381-397CrossRefPubMedGoogle Scholar
  31. A.R. Templeton, Optimal randomization strategies when testing the existence of a phylogeographic structure: a reply to Petit and Grivet. Genetics 161 (2002) 473-475Google Scholar
  32. D.P. Wall, Use of nuclear gene glyceraldehyde-3-phosphate dehydrogenase for phylogeny reconstruction of recently diverged lineages in Mitthyridium (Musci: Calymperaceae). Mol. Phylogenet. Evol. 25 (2002) 10-26PubMedCrossRefGoogle Scholar
  33. Z.E. Yaniv, E. Shabelsky and D. Schafferman, Colocynth: potential arid land oilseed from an ancient cucurbit. In: J. Janick (ed.) Perspectives on New Crops and New Uses. Alexandria, Virginia: ASHS Press (1999) pp. 257-261Google Scholar
  34. A. Yokota, S. Kawasaki, M. Iwano, C. Nakamura, C. Miyake and K. Akashi, Citrulline and DRIP-protein (ArgE homologue) in drought tolerance of wild watermelon. Ann. Bot. 89 (2002) 825-832CrossRefPubMedGoogle Scholar
  35. D. Zohary and M. Hopf, Domestication of Plants in the Old World. Oxford, UK: Oxford University Press (2000).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of HorticultureAuburn UniversityAuburnUSA

Personalised recommendations