Genetic Resources and Crop Evolution

, Volume 53, Issue 7, pp 1351–1360 | Cite as

Genetic Diversity and Relationships of Wheat Landraces from Oman Investigated with SSR Markers

  • P. Zhang
  • S. Dreisigacker
  • A. Buerkert
  • S. Alkhanjari
  • A. E. Melchinger
  • M. L. WarburtonEmail author


Little is known about genetic diversity and geographic origin of wheat landraces from Oman, an ancient area of wheat cultivation. The objectives of this study were to investigate the genetic relationships and levels of diversity of six wheat landraces collected in Oman with a set of 30 evenly distributed SSR markers. The total gene diversity, (H T), conserved in the three durum wheat (Triticum durum desf.) landraces (H T = 0.46) was higher than in the three bread wheat (Triticum aestivum L.) landraces (H T = 0.37), which were similar to Turkish and Mexican bread wheat landraces calculated in previous studies. Genetic variation partitioning (G ST) showed that variation was mainly distributed within rather than among the durum (G ST = 0.30) and bread wheat (G ST = 0.19) landraces. Based on modified Rogers’ distance (MRD), the durum and bread wheat landraces were distinct from each other except for a few individuals according to principal coordinate analysis (PCoA). One bread wheat landrace (Greda) was separated into two distinct sub-populations. A joint cluster analysis with other landraces of worldwide origin revealed that Omani bread wheat landraces were different from other landraces. However, two landraces from Pakistan were grouped somewhat closer to Omani landraces indicating a possible, previously unknown relationship. Implications of these results for future wheat landrace collection, evaluation and conservation are discussed.


Genetic diversity Landrace Oman Triticum aestivum Triticum durum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.W. Allard, Population structure and sampling methods. In: O.H. Frankel and E. Bennett (eds.) Genetic Resources in Plants – Their Exploration and Conservation. IBP Handbook No. 11. Oxford and Edinburgh: Blackwell Scientific Publications (1970) pp. 97-107Google Scholar
  2. A. Al-Maskri, M. Nagieb, K. Hammer, A.A. Filatenko, I. Khan and A. Buerkert, A note about Triticum in Oman. Genet. Resour. Crop Evol. 50 (2003) 83-87CrossRefGoogle Scholar
  3. J.A. Anderson, G.A. Churchill, J.E. Autrique, S.D. Tanksley and M.E. Sorrells, Optimizing parental selection for genetic linkage maps. Genome 36 (1993) 181-186PubMedGoogle Scholar
  4. Agriculture Statistics. Sultanate of Oman: Department of Statistics, Ministry of Agriculture and Fisheries (1995).Google Scholar
  5. Wheat Cultivation in Oman. Sultanate of Oman: Nashrah IrshadiyahMinistry of Agriculture and Fisheries, Oman Extension Guideline (2000).Google Scholar
  6. H.J. Baek, A. Beharav and E. Nevo, Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneumpopulations in Jordan. Theor. Appl. Genet. 106 (2003) 397-410PubMedGoogle Scholar
  7. A.H.D. Brown, Core collections: a practical approach to genetic resources management. Genome 31 (1989) 818-824Google Scholar
  8. A.H.D. Brown, C.L. Brubaker and J.P. Grace, Regeneration of germplasm samples: wild versus cultivated plant species. Crop Sci. 37 (1997) 7-13Google Scholar
  9. S. Chao, P.J. Sharp, A.J. Worland, R.M.D. Koebner and M.D. Gale, RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78 (1989) 495-504CrossRefGoogle Scholar
  10. E.H. Dakir, M.L. Ruiz, P. Garcia and M.P. Vega, Genetic variability evaluation in a Moroccan collection of barley, Hordeum vulgare L., by means of storage proteins and RAPDs. Genet. Resour. Crop Evol. 49 (2002) 619-631CrossRefGoogle Scholar
  11. K. Dreher, M. Khairallah, J.-M. Ribaut and M. Morris, Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol. Breed. 3 (2003) 221-234CrossRefGoogle Scholar
  12. S. Dreisigacker, P. Zhang, M.L. Warburton, M. Ginkel, D. Hoisington, M. Bohn and A.E. Melchinger, SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega-environments. Crop Sci. 44 (2004a) 381-388CrossRefGoogle Scholar
  13. S. Dreisigacker, P. Zhang, M.L. Warburton, B. Skovmand, D. Hoisington and A.E. Melchinger, Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resource management. Crop Sci. 45 (2005) 653-661CrossRefGoogle Scholar
  14. J. Dvorak, M.C. Luo, Z.L. Yang and H.B. Zhang, The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97 (1998) 657-670CrossRefGoogle Scholar
  15. J. Enjalbert and J.L. David, Inferring recent outcrossing rates using multilocus individual heterozygosity: application to evolving wheat populations. Genetics 156 (2000) 1973-1982PubMedGoogle Scholar
  16. I. Eujayl, M.E. Sorrells, M. Braun, P. Wolters and W. Powell, Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet. 104 (2002) 399-407PubMedCrossRefGoogle Scholar
  17. M. Frisch, M. Bohn and A.E. Melchinger, Plabsim: software for simulation of marker-assisted backcrossing. J. Hered. 91 (2000) 86-87PubMedCrossRefGoogle Scholar
  18. J.E. Gilbert, R.V. Lewis, M.J. Wilkinson and P.D.S. Caligari, Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet. 98 (1999) 1125-1131CrossRefGoogle Scholar
  19. J.C. Gower, Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53 (1966) 325-388CrossRefGoogle Scholar
  20. Guarino L. 1990. Crop Collecting in the Sultanate of Oman in the Context of the Arabian Peninsula. PGR Newsletter pp. 27--33Google Scholar
  21. K. Hammer, A.A. Filatenko, S. Alkhanjari, A. Al-Maskri and A. Buerkert, Emmer (Triticum dicoccon Schrank) in Oman. Genet. Resour. Crop Evol. 51 (2004) 111-113CrossRefGoogle Scholar
  22. L. Huang, E. Millet, J.K. Rong, J.F. Wendel, Y. Anikster and M. Feldman, Restriction fragments length polymorphism in wild and cultivated tetraploid wheat. Israel J. Plant Sci. 47 (1999) 213-224Google Scholar
  23. X.Q. Huang, A. Börner, M.S. Röder and M.W. Ganal, Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105 (2002) 699-707PubMedCrossRefGoogle Scholar
  24. A. Karp, S. Kresovich, K.V. Bhat, W.G. Ayad and T. Hodgkin, Molecular Tools in Plant Genetic Resources Conservation: A Guide to the Technologies. Rome: IPGRI (1997).Google Scholar
  25. H.S. Kim and R.W. Ward, Pattern of RFLP-based genetic diversity in germplasm pools common wheat with different geographical breeding programs origins. Euphytica 115 (2000) 197-208CrossRefGoogle Scholar
  26. H. Lieth, J. Berlekamp, S. Fuest and S. Riediger, Climate diagram world atlas, 1st edition 7/1999. In: H. Lieth (ed.) CD-Series: Climate and Biosphere. Leiden: Backhuys Publishers (1999) pp. Google Scholar
  27. I.A. Matus and P.M. Hayes, Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45 (2002) 1095-1106PubMedCrossRefGoogle Scholar
  28. E. Luedeling, M. Nagieb, F. Wichern, M. Brandt, M. Deurer and A. Buerkert, Drainagesalt leaching and physico-chemical properties of irrigated man-made terrace soils in a mountain oasis of notrhern Oman. Geoderma 125 (2005) 273-285CrossRefGoogle Scholar
  29. M. Nagieb, J. Häser, S. Siebert, E. Luedeling and A. Buerkert, Settlement history of a Mountain Oasis in Northern Oman – evidence from land use and archaeological studies. Die Erde 135 (2004) 81-106Google Scholar
  30. M. Nei, Molecular Evolutionary Genetics. New York: Columbia University Press (1987).Google Scholar
  31. P.G. Pardey, B. Koo, B.D. Wright, M.E. Dusen, B. Skovmand and S. Taba, Costing the conservation of genetic resources: CIMMYT's ex situ maize and wheat collection. Crop Sci. 41 (2001) 1286-1299CrossRefGoogle Scholar
  32. H.K. Parzies, W. Spoor and R.A. Ennos, Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84 (2000) 476-486PubMedCrossRefGoogle Scholar
  33. C. Rebourg, B. Gouesnard and A. Charcosset, Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation. Heredity 86 (2001) 574-587PubMedCrossRefGoogle Scholar
  34. M.A. Saghai-Maroof, K. Soliman, R.A. Jorgensen and R.W. Allard, Ribosomal DNA spacer length polymorphism in barley: mendelian inheritancechromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81 (1984) 8014-8018PubMedCrossRefGoogle Scholar
  35. F. Salamini, H. Özkan, A. Brandolini, R. Schäfer-Pregl and W. Martin, Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3 (2002) 429-441PubMedGoogle Scholar
  36. S. Sibert, J. Häser, M. Nagieb, L. Korn and A. Buerkert, Agricultural architectural and archaelogical evidence for the role and ecological adaption of a scattered mountain oasis in Oman. J. Arid Environ. 62(1) (2005) 177-197CrossRefGoogle Scholar
  37. H. Siedler, M.M. Messmer, G.M. Schachermayr, H. Winzeler, M. Winzeler and B. Keller, Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor. Appl. Genet. 88 (1994) 994-1003CrossRefGoogle Scholar
  38. P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy. The Principles and Practices of Numerical Classification. San Francisco: W. H. Freeman (1973).Google Scholar
  39. S. Tang and S.J. Knapp, Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106 (2003) 990-1003PubMedGoogle Scholar
  40. R. Treuren, L.J.M. Soest and T.J.L. Hintum, Marker-assisted rationalization of genetic resource collections: a case study in flax using AFLPs. Theor. Appl. Genet. 103 (2001) 144-152CrossRefGoogle Scholar
  41. M. Warburton and D. Hoisington, Applications of molecular marker techniques to the use of international germplasm collections. In: R. Henry (ed.) Plant Genotyping – The DNA Fingerprinting of Plants. Oxon, UK: CAB International (2001) pp. Google Scholar
  42. S. Wright, Evolution and Genetics of Populations. Chicago: University Chicago Press (1978).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P. Zhang
    • 1
  • S. Dreisigacker
    • 2
  • A. Buerkert
    • 3
  • S. Alkhanjari
    • 3
    • 4
  • A. E. Melchinger
    • 2
  • M. L. Warburton
    • 1
    Email author
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)Mexico D.F.Mexico
  2. 2.Institute of Plant Breeding, Seed Science, and Population GeneticsUniversity of HohenheimStuttgartGermany
  3. 3.Institute of Crop ScienceUniversity of KasselWitzenhausenGermany
  4. 4.Department of Crop Sciences, College of Agriculture and Marine SciencesSultan Qaboos UniversityAl-KhodOman

Personalised recommendations