Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 2, pp 279–285 | Cite as

Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metzg. as revealed by AFLP analysis

  • Shohei Takuno
  • Taihachi Kawahara
  • Ohmi Ohnishi
Article

Abstract

The cultivated types of Brassica rapa L. em. Metzg. consist of morphologically distinct subspecies such as turnip, turnip rape, Chinese cabbage, pak choi and pot herb mustard which are classified as ssp. rapa, ssp. oleifera, ssp. pekinensis, ssp. chinensis and ssp. nipposinica (syn. ssp. japonica), respectively. We attempted to elucidate the phylogenetic relationships among the cultivated types of B. rapa. Thirty-two accessions from the Eurasian Continent were analyzed using AFLP markers with a cultivar of B. oleracea as an outgroup. In total, 455 bands were detected in the ingroup and 392 (86.6%) were polymorphic. The Neighbor-Joining tree based on the AFLP markers indicated that the accessions of B. rapa were congregated into two groups according to geographic origin. One group consisted of ssp. rapa and ssp. oleifera of Europe and Central Asia and the other included all the subspecies of East Asia. Our results suggest that cultivars from East Asia were probably derived from a primitive cultivated type, which originated in Europe or in Central Asia and migrated to East Asia. This primitive cultivated type was probably a common ancestor of ssp. rapa and ssp. oleifera. The Neighbor-Joining tree also shows that leafy vegetables in East Asia such as ssp. pekinensis, ssp. chinensis and ssp. nipposinica were differentiated several times from the distinct cultivars of ssp. oleifera in East Asia.

Key words

Amplified fragment length polymorphism Brassica rapa Metzg. Crop evolution Phylogenetic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajimone M.P., Castigliono P., Fusari F., Kuiper M. and Motto M. (1998). Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96: 219–227CrossRefGoogle Scholar
  2. Albertson R.C., Markert J.A., Danley P.D. and Kocher T.D. (1999). Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake MalawiEast Africa. Proc. Natl. Acad. Sci. USA 96: 5107–5110PubMedCrossRefGoogle Scholar
  3. Aoba T. (2000). Japanese Vegetables (in Japanese). Yasaka Press, Tokyo, 150–163Google Scholar
  4. Badr A., Müller K., Schäfer-Pregl R., El Rabey H., Effgen S., Ibrahim H.H., Pozzi C., Rohde W. and Salamini F. (2000). On the origin and domestication history of Barley (Hordeum vulgare). Mol. Biol. Evol. 17: 499–510PubMedGoogle Scholar
  5. Bohn M., Utz F.H. and Melchinger A.E. (1999). Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci. 39: 228–237CrossRefGoogle Scholar
  6. Crouch J.H., Lewis B.G., Lydiate D.J. and Mithen R. (1995). Genetic diversity of wildweedy and cultivated forms of Brassica rapa. Heredity 74: 491–496Google Scholar
  7. De Candolle A. 1886. Origin of Cultivated Plants. Hafner Publ. Co., New York, 1964 reprint.Google Scholar
  8. Escaravage N., Questiau S., Pornon A., Doche B. and Taberlet P. (1998). Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Mol. Ecol. 7: 975–982CrossRefGoogle Scholar
  9. Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791CrossRefGoogle Scholar
  10. Gladis T.H. and Hammer K. 1992. Die Gaterslebener Brassica-Kollektion – Brassica juncea and B. napus and B. nigra und B. rapa (in German). Feddes Repertorium 103: 7–8, 469–507.Google Scholar
  11. Jaccard P. (1908). Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise. Sci. Nat. 44: 223–270Google Scholar
  12. Moran P. and Kornfield I. (1993). Retention of an ancestral polymorphism in the Mbuna species flock (Teleostei: Cichlidae) of Lake Malawi. Mol. Biol. Evol. 10: 1015–1029Google Scholar
  13. Nishi S. (1980). Differentiation of Brassica crops in Asia and the breeding of ȁ8Hakuranȁ9, a newly synthesized leafy vegetable. In: Tsunoda, S., Hinata, K. and Gomez-Campo, R.C. (eds) Brassica Crops and Wild Allies: Biology and Breeding, pp 133–150. Jpn. Sci. Soc. Press, TokyoGoogle Scholar
  14. Olsson G. (1954). Crosses within the campestris group of the genus Brassica. Hereditas 40: 398–418CrossRefGoogle Scholar
  15. Oost E.H., Brandenburg W.A., Reuling G.T.M. and Jarvis C.E. (1987). Lectotypification of Brassica rapa L., B. campestris L. and neotypification of B. chinensis L. (Cruciferae). Taxon 36: 625–634CrossRefGoogle Scholar
  16. Prakash S. and Hinata K. (1980). Taxonomy, cytogenetics and origin of crop Brassica a review. Opera Bot. 55: 1–57Google Scholar
  17. Saitou N. and Nei M. (1987). The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425PubMedGoogle Scholar
  18. Sinskaja E.N. (1928). The oleiferous plants and root crops of the family Cruciferae. Bull. Appl. Bot. Gen. Plant Breed. 19: 1–648Google Scholar
  19. Song K.M., Osborn T.C. and Williams P.H. (1988). Theor. Appl. Genet. 76: 593–600CrossRefGoogle Scholar
  20. Song K., Osborn T.C. and Williams P.H. (1990). Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. Genome relationships in Brassicarelated genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor. Appl. Genet. 79: 497–506CrossRefGoogle Scholar
  21. Tsunoda S. (1980). Eco-physiology of wild and cultivated forms in Brassicaallied genera. In: Tsunoda, S., Hinata, K. and Gomez-Campo, R.C. (eds) 109–120. Jpn. Sci. Soc. Press, TokyoGoogle Scholar
  22. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10: 569–570PubMedGoogle Scholar
  23. Vos P., Hongers R., Bleeker M., Reijans M., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Shohei Takuno
    • 1
  • Taihachi Kawahara
    • 2
  • Ohmi Ohnishi
    • 2
  1. 1.Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural ScienceTohoku UniversityAoba, SendaiJapan
  2. 2.Laboratory of Crop Evolution, Graduate School of AgricultureKyoto UniversityNakajo, Mozume, MukoJapan

Personalised recommendations