Genetic Resources and Crop Evolution

, Volume 53, Issue 6, pp 1273–1289 | Cite as

Nature of taro (Colocasia esculenta (L.) Schott) genetic diversity prevalent in a Pacific Ocean island, Vanua Lava, Vanuatu

  • S. Caillon
  • J. Quero-Garcia
  • J.-P. Lescure
  • V. Lebot
Article

Abstract

Taro (Colocasia esculenta (L.) Schott), cultivated in Vêtuboso, a village of northern Vanuatu, Melanesia, was surveyed to: (1) assess the extent of morphological and molecular variation being maintained by growers at the village level and, (2) compare this diversity with the diversity found in the crops in Vanuatu. Ethnobotanical data were combined with AFLP analysis to elucidate possible sources of variation. Folk assessment of variation is based on: (a) morphological characteristics (11 characters), (b) names and (c) classification according to habitat, uses, origin and agronomic adaptation. This 3-fold approach allowed growers to differentiate 96 morphotypes, all of which are given distinct vernacular names. AFLP fingerprints successfully differentiated all these 96 morphotypes which do not present a significant intra-clonal variation. But genetic results showed no clear groupings according to geographic origin or habitat of morphotypes and stated that the diversity found within the village was comparable with the overall diversity found in Vanuatu. Local nomenclature and stories associated with each cultivar suggested three sources of diversity: introductions (38%), somatic mutations (15%) and sexual recombinations (48%). AFLP results confirm folk beliefs about origin at least for three pairs of mutants. The 11 so-called wild forms analysed by AFLP were suggested to be feral, escapes from domestication. A dynamic in situ conservation strategy (DISC), favouring a broadening of the national genetic base, was discussed for taro.

Key words

AFLP Agrobiodiversity Colocasia esculenta On-farm variation Sexual reproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulmer R. (1965). Beliefs concerning the propagation of new varieties of sweet potato in two New Guinea Highlands societies. J. Polyn. Soc. 74(2): 237–239Google Scholar
  2. Caillon S. and Lanouguère-Bruneau V. 2005. Gestion de l’agrobiodiversité dans un village de Vanua Lava (Vanuatu): stratégies de sélection et enjeux sociaux. J.S.O. (120)1.Google Scholar
  3. Caillon S., Quero-García J. and Guarino L. (2004). Taro in Vanuatu: towards a dynamic conservation strategy. LEISA 20(1): 18–20Google Scholar
  4. Coates D.J., Yen D.E. and Gaffey P.M. (1988). Chromosome variation in taroColocasia esculenta. Implications for origin in the Pacific. Cytologia 53: 551–560Google Scholar
  5. Conklin H. (1962). Lexicographical treatment of the folk taxonomies. In: Householder, F.W. and Saporta, S. (eds) Problems in Lexicography, pp 119–141. Indiana University Research Center in Anthropology, Folklore and Linguistic Publication no. 21, Bloomington, USAGoogle Scholar
  6. Emperaire L., Pinton F. and Second G. (1998). Gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. N.S.S. 6(2): 27–42Google Scholar
  7. Elias M. (2000). Perception and Management of Cassava. J. Ethnobiol 20(2): 239–265Google Scholar
  8. Farmer Support Association (FSA) 1999. In situ conservation of taro. A Feasability Study: Vanuatu. Taro Genetic Resources Project, ACIL, AUSAID, ACIL, AUSAID, Luganville, Vanuatu.Google Scholar
  9. Ghérardi M., Mangin B., Goffinet B., Bonnet D. and Huguet T. (1998). A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers. Theor. Appl. Genet. 96: 406–412CrossRefGoogle Scholar
  10. Hess S. 2005. Perceptions of place and concept of the person on Vanua LavaVanuatu. PhD dissertation, Australian. National University.Google Scholar
  11. Ivancic A. (1995). Abnormal and unusual inflorescences of taroColocasia esculenta (Araceae). Aust. J. Bot. 43: 475–489CrossRefGoogle Scholar
  12. Ivancic A. and Lebot V. (1999). Botany and genetics of New Caledonian wild taro, Colocasia esculenta. Pacific Sci. 53(3): 273–285Google Scholar
  13. Ivancic A. and Lebot V. (2000). The Genetics and Breeding of Taro. Séries Repéres MAD, Montpellier, FranceGoogle Scholar
  14. Ivancic A., Lebot V., Roupsard O., Quero-Garcia J. and Okpul T. (2004). Thermogenic flowering of taro (Colocasia esculenta). Can. J. Bot. 82(11): 1557–1565CrossRefGoogle Scholar
  15. Jansen T. (2002). Hidden TaroHidden Talents: A Study of On-farm Conservation of Colocasia esculenta (taro) in Solomon Islands. Solomon Islands Planting Material Network and Kastom Garden Association, Honiara, Solomon IslandsGoogle Scholar
  16. Jones C.J., Edwards K.J., Castaglione S., Winfield M.O., Sala F., de Wiel C., Bredemeijer G., Vosman B., Matthes M., Daly A., Brettschneider R., Bettini P., Buiatti M., Maestri E., Malcevschi A., Marmiroli N., Aert R., Volckaert G., Rueda J., Linacero R., Vazquez A. and Karp A. (1997). Reproducibility testing RAPD, AFLP and SSR markers in plants by network of European laboratories. Mol. Breed. 3: 381–390CrossRefGoogle Scholar
  17. Kikuta K., Whitney L.D. and Parris G.K. (1938). Am. J. Bot. 25: 186–188CrossRefGoogle Scholar
  18. Kreike C.M. and Lebot V. (2004). Genetic diversity of taro (Colocasia esculenta (L.) Schott) in South-East Asia and Pacific. Theor. Appl. Genet. 109: 761–768PubMedCrossRefGoogle Scholar
  19. Lebot V. and Aradhya K.M. (1991). Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56: 55–66Google Scholar
  20. Lebot V., Hartati S., Hue N.T., Viet N.V., Nghia N.H., Okpul T., Pardales J., Prana M.S., Prana T.K., Thongjiem M., Krieke C.M., VanEck H., Yap T.C. and Ivancic A. 2000. Genetic variation in taro (Colocasia esculenta) in South East Asia and Oceania. In: Nakatani M. and Komaki K.(eds) Proceedings of the Twelfth Symposium of the ISTRC, TsukubaJapan, September 10–16, 2000, pp. 524–533.Google Scholar
  21. Lebot V., Prana M.S., Kreike N., Pardales J., Okpul T., Gendua T., Thongjiem M., Hue H. and Yap T.C. (2004). Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genet. Resour. Crop Evol. 51: 381–392CrossRefGoogle Scholar
  22. Lebot V., Trilles B., Noyer J.L. and Modesto J. (1998). Genetic relationships between Discorea alata L. cultivars. Genet. Resour. Crop Evol. 45(6): 499–509CrossRefGoogle Scholar
  23. Levi-Strauss C. (1962). La pensée sauvage. Ed. Pion, ParisGoogle Scholar
  24. Mace E. and Godwin I.D. (2002). Development and characterization of polymorphic microsatellite markers in taroColocasia esculenta (L.) Schott. Genome 45(5): 823–832PubMedCrossRefGoogle Scholar
  25. Malapa R., Arnau G., Noyer J.L. and Lebot V. 2005. Genetic diversity of the Greater Yam (Dioscorea alata L.) and relatedness to D. nummularia Lam. and D. transversa Br. as revealed with AFLP markers. Genet. Resour. Crop Evol. (in press).Google Scholar
  26. Majnep I.S. and Bulmer R. (1977). Birds of my Kalam Country. Auckland University Press, Auckland, New ZealandGoogle Scholar
  27. Noyer J.L., Billot C., Weber A., Brottier P., Quero-García J. and Lebot V. 2005. Genetic diversity of taro (Colocasia esculenta (L.) Schott) assessed by SSR markers. In: Guarino L. and Taylor M.(eds) Proceedings of the 3rd International Taro Symposium, SPC-TPGRI-FAO-CIRAD, Nadi, Fiji, 22–24 May, 2003, (in press).Google Scholar
  28. Panoff F. (1972). Maenge Gardens. A Study of Maenge Relationship to Domesticates. Australian National University, Canberra, AustraliaGoogle Scholar
  29. Perrier X., Flori A. and Bonnot F. (2001). Methods of data analysis. In: Hamon, P., Seguin, M., Perrier, X., and Glaszmann, J.C. (eds) Genetic Diversity of Cultivated Tropical Plants, pp 31–63. Cirad, Montpellier, FranceGoogle Scholar
  30. Prain G., Schneider J. and Widiyastuti C. (2000). Farmers’ maintenance of sweet potato diversity in Irian Jaya. In: Almekinders, C. (eds) Encouraging Diversity. The Conservation and Development of Plant Genetic Resources, pp 54–59. Intermediate Technology Publications Ltd, 362, LondonGoogle Scholar
  31. Quero-Garcia J., Noyer J.L., Marchand J.L. and Lebot V. (2004). Germplasm stratification of taro (Colocasia esculenta) based on agro-morphological descriptors. Validation by AFLP markers. Euphytica 137: 387–395CrossRefGoogle Scholar
  32. Salick J., Cellinese N. and Knapp S. (1997). Indigenous diversity of cassava: generation, maintenanceuse and loss among the Amuesha, Peruvian Upper Amazon. Econ. Bot. 51(1): 6–19Google Scholar
  33. Shaw D.E. (1975). Illustrated notes on flowering, flowers, seed and germination in taro (Colocasia esculenta (L.) Schott). Port Moresby, Papua New GuineaRes. Bull. Dept. Agric. 13: 39–59Google Scholar
  34. Sokal R.R. and Michener C.D.A. (1958). A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409–1438Google Scholar
  35. Sreekumari M.T. and Thankamma Pillai P.K. (1994). Breeding barriers in taro (Colocasia esculenta (L.) Schott). J. Root Crops 20(1): 20–25Google Scholar
  36. (1994). Vanuatu National Agriculture Census. Main Report. Port Vila, VanuatuGoogle Scholar
  37. Yen D.B. (1960). The sweet potato in the Pacific: the propagation of the plant in relation to its distribution. J. Polyn. Soc. 69: 368–375Google Scholar
  38. Weightman B. (1989). Agriculture in Vanuatu. A Historical Review. The British Friends of Vanuatu, PortsmouthGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. Caillon
    • 1
  • J. Quero-Garcia
    • 2
  • J.-P. Lescure
    • 1
  • V. Lebot
    • 3
  1. 1.IRDOrleansFrance
  2. 2.CIRADMontpellierFrance
  3. 3.CIRADVanuatu

Personalised recommendations