Genetic Resources and Crop Evolution

, Volume 54, Issue 1, pp 167–173 | Cite as

Genetic Diversity for Morphological and Quality Traits in Quinoa(Chenopodium quinoa Willd.) Germplasm



Twenty nine germplasm lines of Chenopodium quinoa and two of Chenopodium berlandieri subsp. nuttalliae were evaluated for 12 morphological and 7 quality traits for two test seasons. The 19 traits were analyzed for cluster and principal component analysis. The first four PCs contributed 78.70 % of the variability among the germplasm lines. The first PC accounted for 39.5% of the variation and had inflorescence/plant, plant height and stem diameter as the traits with largest coefficients, all with positive sign. The characters with greatest positive weight on PC2 were days to maturity (0.309), inflorescence length (0.260) and branches/plant. All the germplasm lines were grouped into six clusters based on average linkage method. Cluster III had high values for seed yield and most of the quality traits but showed a small seed size. The dendrogram separated the two lines of C. berlandieri subsp. nuttalliae from the quinoa lines.


Chenopodium berlandieri Chenopodium quinoa Genetic diversity Multivariate analysis Principal component analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alemayehu N. and Becker H. (2002). Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genet. Resour. Crop Evol. 49: 573–582CrossRefGoogle Scholar
  2. Allen P. 1929. Beitrag zur Systematik der Chenopodium- Arten Amerikas, vorwiegend auf Grund der Sammlung des United States National Museum in Washington, D.C. Feddes Repert. Spec. Nov. Regni Veg. 26: 31–64, 119–160.Google Scholar
  3. Amurrio J.O., de Ron A.M. and Zeven A.C. (1995). Numerical taxonomy of Iberian pea landraces based on quantitative and qualitative characters. Euphytica 82: 195–205CrossRefGoogle Scholar
  4. Berdahl J.D., Mayland H.F., Asay K.H. and Jefferson P.G. (1999). Variation in agronomic and morphological traits among Russian wildrye accessions. Crop Sci. 39: 1890–1895CrossRefGoogle Scholar
  5. Bhargava A., Shukla S., Katiyar R.S. and Ohri D. (2003). Selection parameters for genetic improvement in Chenopodium grain on sodic soil. J. Appl. Hort. 5(1): 45–48Google Scholar
  6. Bhargava A., Shukla S. and Ohri D. (2005a). Seed protein electrophoresis of some cultivated and wild species of Chenopodium (Chenopodiaceae). Biol. Plan. 49(4): 505–511CrossRefGoogle Scholar
  7. Bhargava A., Shukla S. and Ohri D. 2005b. Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet. Resour. Crop Evol. (in press).Google Scholar
  8. Cardozo A. and Tapia M.E. 1979. Valor nutritivo. In: Tapia M.E.(eds.), Quinuay Kaniwa. Cultivos Andinos. Serie libros y Materiales educativos. Instituto Interamericano de Ciencias Agricolas, BogotaColumbia 49: 149–192.Google Scholar
  9. Chandran K. and Padya S.M. (2000). Morphological characterization of Arachis species of section Arachis. Plant Genet. Resour. Newslett. 121: 38–41Google Scholar
  10. Ghafoor A., Sharif A., Ahmad Z., Zaihid M.A. and Rabbani M.A. (2001). Genetic diversity in blackgram (Vigna mungo (L). Hepper.). Field Crop. Res. 69: 183–190CrossRefGoogle Scholar
  11. Guil-Guerrero J.L., Gimenez-Gimenez A., Rodriguez-Garcia I. and Torija-Isasa M.E. (1999). Nutritional composition of Sonchus species (S. asper L., S. oleraceus L. and S. tenerrimus L.). Sci. Food. Agric. 76(4): 628–632CrossRefGoogle Scholar
  12. Heiser C.B. and Nelson D.C. (1974). On the origin of cultivated chenopods (Chenopodium). Genetics 78: 503–505 Google Scholar
  13. Jacobsen S.E., Mujica A. and Jensen C.R. (2003). The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19(1–2): 99–109CrossRefGoogle Scholar
  14. Koziol M.J. (1992). Chemical composition and nutritional value of quinoa (Chenopodium quinoa Willd.). J. Food Comp. Anal. 5: 35–68CrossRefGoogle Scholar
  15. Mujica A., Jacobsen S.E., Izquierdo J. and Marathee J.P. (2001). Resultados de la Prueba Americana y Europea de la Quinua. FAO, UNA–PunoCIP, 51 Google Scholar
  16. Ortiz R., Madsen S., Ruiz-Tapia E.N., Jacobsen S.E., Mujica-Sanchez A., Christiansen J.L. and Stolen O. (1999). Validating a core collection of Peruvian quinoa germplasm. Genet. Resour. Crop Evol. 46(3): 285–290CrossRefGoogle Scholar
  17. Prakash D., Nath P. and Pal M. (1993). Composition, variation of nutritional contents in leaves, seed protein, fat and fatty acid profile of Chenopodium species. J. Sci. Food. Agric. 62: 203–205CrossRefGoogle Scholar
  18. Rabbani M.A., Iwabuchi A., Murakami Y., Suzuki T. and Takayanagi K. (1998). Phenotypic variation and the relationships among mustard (Brassica juncea L.) germplasm from Pakistan. Euphytica 101: 357–366CrossRefGoogle Scholar
  19. Risi J. and Galwey N.W. (1984). The Chenopodium grains of the Andes: Inca crops for modern agriculture. In: Coaker, T.H. (eds) Advances in Applied Biology, Vol. 10. Academic Press, London 145–216Google Scholar
  20. Risi J. and Galwey N.W. (1989a). The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd.). II Multivariate methods. Euphytica 41: 135–145CrossRefGoogle Scholar
  21. Risi J. and Galwey N.W. (1989b). Chenopodium grains of the Andes: acrop for the temperate latitudes. In: Wickens, G.E., Haq, N. and Day, P. (eds) New Crops for Food and Industry, Chapman and Hall, London 222–234.Google Scholar
  22. Ruales J. and Nair B.M. (1992). Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods Hum. Nutr. 42: 1–12CrossRefPubMedGoogle Scholar
  23. Ruas P.M, Bonifacio A., Ruas C.F., Fairbanks D.J. and Anderson W.R. (1999). Genetic relationships among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105(1): 25–32CrossRefGoogle Scholar
  24. Shukla S., Pandey V., Pachauri G., Dixit B.S., Banerji R. and Singh S.P. (2003). Nutritional contents of different foliage cuttings of vegetable amaranth. Plant Food Hum. Nutr. 58: 1–8CrossRefGoogle Scholar
  25. Simmonds N.W. (1976). Quinoa and relatives. In: Simmonds, N.W. (eds) Evolution of Crop Plants, Longman, New York 29–30Google Scholar
  26. Singh S.P. (1991). Genetic divergence and canonical analysis in hyacinth bean (Dolichos lablab L.). J. Genet. Breed. 45: 7–12Google Scholar
  27. Singh S.P., Shukla S. and Yadav H.K. (2004). Multivariate analysis in relation to breeding system in opium poppy (Papaver somniferum L.). Genetika 34(2): 111–120CrossRefGoogle Scholar
  28. Sneath P.H.A. and Sokal R.R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. Freeman San Francisco, CAGoogle Scholar
  29. Wilson H.D. and Heiser C.B. (1979). The origin and evolutionary relationships of 'Huauzontle' (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Am. J. Bot. 66(2): 198–206CrossRefGoogle Scholar
  30. Wright K.H., Pike O.A., Fairbanks D.J. and Huber C.S. (2002). Composition of Atriplex hortensissweet and bitter Chenopodium quinoa seeds. J. Food Sci. 67(4): 1383–1385CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Division of Genetics and Plant BreedingNational Botanical Research InstituteLucknowIndia
  2. 2.Central Institute for Subtropical HorticultureLucknowIndia

Personalised recommendations