Advertisement

Genetic Resources and Crop Evolution

, Volume 52, Issue 4, pp 371–380 | Cite as

Comparative Study of Common Bean ( Phaseolus vulgarisL.) Landraces Conserved ex situ in Genebanks and in situ by Farmers

  • O. J. Gómez
  • M. W. Blair
  • B. E. Frankow-Lindberg
  • U. Gullberg
Article

Abstract

Genetic diversity of populations stored ex situ or in situ can be altered due to the management practices they are subjected to. In this paper, we compare populations of two common bean (Phaseolus vulgaris L.) landraces grown on farms with material collected from the same farms and now kept in two ex situ collections (CIAT and REGEN) with the purpose to monitor any changes that have occurred due to ex situ conservation. The diversity was measured using seven bean microsatellite markers. Further phenotypic and developmental traits were registered in a field experiment. Compared with the in situ populations, the ex situ ones had a lower level of gene diversity and we suggest that this is due to the regeneration process. Most of the phenotypic traits did not differ significantly between ex situ and in situ populations, although for yield and 100-seed weight, the CIAT material showed significant lower values. We assume that these populations have gone through an adaptational change. Overall, the conservation ex situ has been successful in maintaining the majority of the adaptations found in the landraces studied, however, the probable loss of genetic diversity that we have observed, suggest that protocols for the regeneration process must be carefully worked out if the majority of alleles are to be preserved for the future. This study also highlights the complementarity of ex situ and in situ conservation methods in order to preserve landrace adaptations and to capture new, useful diversity generated in in situ populations.

Keywords

Bean Ex situ Genetic diversity level In situ Landraces Nicaragua Phaseolus vulgaris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altieri, M.A., Merrick, L.C. 1987In situ conservation of crop genetic resources through maintenance of traditional farming systemsEcon. Bot.418696Google Scholar
  2. Bretting, P.K., Widrlechner, M.P. 1995Genetic markers and plant genetic resource managementJanick, J. eds. Plant Breeding Reviews, vol. 13.John Wiley and Sons IncNew York, Chichester1171Google Scholar
  3. Brown, A.H.D. 1999The genetic structure of crop landraces and the challenge to conserve them in situ on farmsBrush, S.B. eds. Genes in the Field. On-Farm Conservation of Crop DiversityIPGRI, IDRC, Lewis PublishersBoca Raton, London, New York and Washington, DC947Google Scholar
  4. Brown, A.H.D., Brubaker, C.L., Grace, J.P. 1997Regeneration of germplasm samples: wild versus cultivated plant speciesCrop Sci.37713Google Scholar
  5. Brush S. (1997). Genetic erosion of crop populations in centers of diversity: a revision. In: Serwinski J., Faberová I. (eds), Proceedings of the Technical Meeting on the Methodology of the FAO World Information and Early Warning System on Plant Genetic Resources, Held at the Research Institute of Crop Production, Prague, Czech Republic: Available from: http://apps3.fao.org/views/Prague/Paper5.htmGoogle Scholar
  6. Brush, S.D. 1991A farmer-based approach to conserving crop germplasmEcon. Bot.45153165Google Scholar
  7. Cohen, J.I., Williams, J.T., Plucknett, D.L., Shands, H. 1991Ex situ conservation of plant genetic resources: global developments and environmental concernsScience253866872Google Scholar
  8. del Rio, A.H., Bamberg, J.B., Huaman, Z. 1997Assessing changes in the genetic diversity of potato genebanks. 1. Effects of seed increaseTheor. Appl. Genet.95191198CrossRefGoogle Scholar
  9. Dellaporta, S.L., Wood, J., Hicks, J.R. 1983A plant DNA minipreparation: Version IIPlant Mol. Biol. Rep.11921Google Scholar
  10. Etisham-Ul-Haq, M., Allnutt, T.R., Smith-Ramýrez, C., Gardner, M.F., Armesto, J.J., Newton, A.C. 2001Patterns of genetic variation in in and ex situ populations of the threatened Chilean vine Berberidopsis corallina, detected using RAPD markersAnn. Bot.87813821CrossRefGoogle Scholar
  11. Gaitan-Solis, E., Duque, M.C., Edwards, K.J., Tohme, J. 2002Microsatellite repeats in common bean (Phaseolus vulgaris): Isolation, characterization, and cross-species amplification in Phaseolus sspCrop Sci.4221282136Google Scholar
  12. Gepts, P. 1993The use of molecular and biochemical markers in crop evolution studiesEvol. Biol.275194Google Scholar
  13. Gilliland, T.J., Coll, R., Calsyn, E., De Loose, M., Eijk, M.J.T., Roldan-Ruiz, I. 2000Estimating genetic conformity between related ryegrass (Lolium) varieties. 1. Morphology and biochemical characterisationMol. Breed.6569580CrossRefGoogle Scholar
  14. González, D.O., Palacios, N., Gallego, G., Tohme, J. 1995Protocolo Para Marcadores MolecularesUnidad de BiotecnologýáCIAT, CaliGoogle Scholar
  15. Goudet J. (2002). Fstat: A Program to Estimate and Test Gene Diversities and Fixation Indices. Version 2.9.3.2. Institut d’Ecologie, Bâtiment de Biologie, Université de Lausanne, CH-1015 Dorigny: Available from http://www.unil.ch/izea/ softwares/fstat.htmlGoogle Scholar
  16. Hamann, A., Zink, D., Nagl, W. 1995Microsatellite fingerprinting in the genus PhaseolusGenome38507515Google Scholar
  17. Hammer K., Diederichsen A., Spahillari M. (1999). Basic studies toward strategies for conservation of plant genetic resources. In: Serwinski J., Faberová I. (ed). Proceedings of the Technical Meeting on the Methodology of the FAO World Information and Early Warning System on Plant Genetic Resources, Held at the Research Institute of Crop Production, Prague: Available from: http://apps3 fao.org/views/Prague/Paper4.htmGoogle Scholar
  18. Hidalgo, R., Beebe, S. 1997Phaseolus BeansFuccillo, D.Sears, L.Stapleton, P. eds. Biodiversity in Trust Conservation and Use of Plant Genetic Resources in CGIAR Centers.Cambridge University PressCambridge139155Google Scholar
  19. Kebebew, F., Tsehaye, Y., McNeilly, T. 2001Morphological and farmers cognitive diversity of barley (Hordeum vulgare L [Poaceae]) at Bale and North Shewa of EthiopiaGenet Resour. Crop Evol.48467481CrossRefGoogle Scholar
  20. Lenné J., Weltzien E.R., Stenhouse J. (1997). A role for ICRISAT in enhancing and maintaining genetic resources on-farm. In: Sperling L., Loevinsohn M. (eds), Using Diversity: Enhancing and Maintaining Genetic Resources On-Farm, IDRC: Available from: http://www.idrc.ca/library/ document/104582/lenne.htmlGoogle Scholar
  21. Louette, D., Charrier, A., Berthaud, J. 1997In situ conservation of maize in Mexico: Genetic diversity and maize seed management in a traditional communityEcon. Bot.512038Google Scholar
  22. Maxted, N., Ford-Lloyd, B.V., Hawkes, J.G. 1997Complementary conservation strategiesMaxted, N.Ford-Lloyd, B.V.Hawkes, J.G. eds. Plant Genetic Conservation: The In-situ Approach.Chapman and HallLondon1540Google Scholar
  23. Maxted, N., Guarino, L., Myer, L., Chiwona, E.A 2002Towards a methodology for on-farm conservation of plant genetic resourcesGenet. Resour. Crop Evol.493146CrossRefGoogle Scholar
  24. Métais, I., Aubry, C., Hamon, B., Jalouzot, R. 2000Description and analysis of genetic diversity between commercial bean lines (Phaseolus vulgaris L.). TheorAppl Genet.10112071214CrossRefGoogle Scholar
  25. Métais, I., Hamon, B., Jalouzot, R., Peltier, D. 2002Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched libraryTheor. Appl. Genet.10413461352CrossRefPubMedGoogle Scholar
  26. Muñoz, G., Giraldo, G., De Soto, J.F. 1993Descriptores varietales: arroz, maíz, frijol y sorgoCentro Internacional de Agricultura Tropical (CIAT)CaliGoogle Scholar
  27. Parzies, H.K., Spoor, W., Ennos, R.A. 2000Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ genebanks Heredity84476486Google Scholar
  28. Piergiovanni, A.R., Laghetti, G. 1999The common bean landraces from Basilicata (Southern Italy): an example of integrated approach applied to genetic resources managementGenet. Resour. Crop Evol.464752CrossRefGoogle Scholar
  29. Richard C.J. (1998). Genetic Structure of Regeneration Populations of Lolium multiflorum. TEKTRAN, Agricultural Research Service, United States Department of Agriculture: Available from: http://www.nal.usda.gov/ttic/ tektran/data/000008/15/0000081582.htmlGoogle Scholar
  30. Roldán-Ruiz, I., Eeuwijk, F.A., Gilliland, T.J., Dubreuil, P., Dillmann, C., Lallemand, J., De Loose, M., Baril, C.P. 2001A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varietiesTheor. Appl. Genet10311381150CrossRefGoogle Scholar
  31. SAS2000JMP® Statistics and Graphics Guide Version 4SAS InstituteCary, NCGoogle Scholar
  32. Schneider S., Roessli D., Excoffier L. 2000. Arlequin Version 2.000: Available from: http://anthro.unige.ch/ arlequinGoogle Scholar
  33. Serwinski J. (1997). Reporting on the assessment of plant genetic erosion. In: Serwinski J., Faberová I. (ed). Proceedings of the Technical Meeting on the Methodology of the FAO World Information and Early Warning System on Plant Genetic Resources, Held at the Research Institute of Crop Production, Prague: Available from: http://apps3.fao.org/ views/Prague/Paper1.htmGoogle Scholar
  34. Singh, S.P. 2001Broadening the genetic base of common bean cultivars: A reviewCrop Sci.4116591675Google Scholar
  35. Singh, S.P., Gutiérrez, J.A., Molina, A., Urrea, C., Gepts, P. 1991Genetic diversity in cultivated common bean. II Marker-based analysis of morphological and agronomic traitsCrop Sci.312329Google Scholar
  36. Weir, B.S., Cockerham, C.C. 1984Estimating F-statistics for the analysis of population structureEvolution3813581370Google Scholar
  37. Yu, K., Park, S.J., Poysa, V. 1999Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna)Genome422734CrossRefGoogle Scholar
  38. Zeuli, S.P.L., Sergio, L., Perrino, P. 1995Changes in the genetic structure of wheat germplasm accessions during seed rejuvenationPlant Breed.114193198Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • O. J. Gómez
    • 1
  • M. W. Blair
    • 2
  • B. E. Frankow-Lindberg
    • 3
  • U. Gullberg
    • 4
  1. 1.National Agrarian UniversityManaguaNicaragua
  2. 2.International Center for Tropical Agriculture (CIAT)CaliColombia
  3. 3.Department of Ecology and Crop Production ScienceSwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations