Genetic Resources and Crop Evolution

, Volume 51, Issue 8, pp 837–843 | Cite as

Geographic variation for isozymes in cherimoya (Annona cherimola Mill.)

  • Francisco Perfectti
  • Luis Pascual
Article

Abstract

Cherimoya (Anonna cherimola Mill.) is a fruit tree which originated in Peru and Ecuador and is now cultivated in several subtropical areas of the world. The characterization of cherimoya cultivars at allozyme level has been previously reported, but the geographic distribution and organization of this variation have not been fully characterized. In this study, we assessed the relationships among 206 cherimoya and four atemoya (A. cherimola ×A. squamosa) cultivars based on allozyme polymorphism. We have confirmed the genetic differences between atemoya and cherimoya cultivars, and showed that cherimoya accessions from Madeira, Bolivia and Spain form homogeneous groups of cultivars. Accessions from Chile and California form heterogeneous groups, probably due to their mixed origins. Cultivars from Peru and Ecuador showed a wide range of allelic variation, as is expected for accessions from the center of origin of this species.

Key words

Annona Cherimoya Genetic diversity Isozyme variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asins M.J. and Carbonell E.A. 1989. Distribution of genetic variability in a durum wheat world collection. Theor. Appl. Genet. 77: 287–294.CrossRefGoogle Scholar
  2. Balakrishnan V. and Sanghvi L.D. 1968. Distance between populations on the basis of attribute data. Biometrics 24: 859–865.Google Scholar
  3. Beer S.C., Goffreda J., Phillips T.D., Murphy J.P. and Sorrells M.E. 1993. Assessment of genetic variation inAvena sterilis using morphological traits, isozymes, and RFLPs. Crop Sci. 33: 1386–1393.CrossRefGoogle Scholar
  4. Bennaceur M., Lanaud C., Chevalier M.H. and Bounaga N. 1991. Genetic diversity of the date palm (Phoenix dactylifera L.) from Algeria revealed by enzyme markers. Plant Breed. 107: 56–69.Google Scholar
  5. Benzecri J.P. 1979. Distance distributionelle et metrique chi-deux en analyse factorielle des correspondences. Laboratoire de Statistique Math, París.Google Scholar
  6. Bretting P.K. and Widrlechner M.P. 1995. Genetics markers and horticultural germplasm management. HortScience 30: 1349–1356.Google Scholar
  7. Chatrou L.W. 1999. The Annonaceae and the Annonaceae project: a brief overview of the state of affairs. Acta Hort. (ISHS) 497: 43–58.Google Scholar
  8. Comps B., Thiebant B., Paule L., Merceau D. and Letouzey J. 1990. Allozymic variability in beechwoods (Fagus sylvatica L.) over central Europe: spatial differentiation among and within populations. Heredity 65: 407–417.Google Scholar
  9. Ellstrand N.C. and Lee J.M. 1987. Cultivar identification of cherimoya (Annona cherimola Mill.) using isozyme markers. Sci. Hort. 32: 25–31.CrossRefGoogle Scholar
  10. Erkine W. and Muehlbauer F.J. 1991. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor. Appl. Genet. 83: 119–125.Google Scholar
  11. Hermoso J.M., Pérez de Oteyza M.A., Ruiz-Nieto A. and Farré J.M. 1999. The Spanish germplasm bank of cherimoya (Annona cherimola Mill.). Acta Hort. (ISHS) 497: 201–224.Google Scholar
  12. Huang H., Dane F. and Norton J.D. 1994. Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.). Theor. Appl. Genet. 88: 981–985.CrossRefGoogle Scholar
  13. Lee J.M. and Ellstrand N.C. 1987. Inheritance and linkage of isozymes in the cherimoya. J. Hered. 78: 383–387.Google Scholar
  14. Leford-Buson M., Lavergne V., Daudin J.J., Charcosset A. and Sampoux J.P. 1991. Genetic variability among populations of maize germplasm. 2. Enzymatic polymorphism and its relationship to quantitative trait diversity. Maydica 36: 237–246.Google Scholar
  15. Li Z. and Rutger J.N. 2000. Geographic distribution and multilocus organization of isozyme variation of rice (Oryza sativa L.). Theor. Appl. Genet. 101: 379–387.CrossRefGoogle Scholar
  16. Liu F., Sun G.-L. and Salomon B. 2001. Distribution of allozymic alleles and genetic diversity in the American Barley Core collection. Theor. Appl. Genet. 102: 606–615.CrossRefGoogle Scholar
  17. Morden C.W., Doebley J.F. and Schertz K.F. 1990. Allozyme variation among the spontaneus species ofSorghum section Sorghum (Poaceae). Theor. Appl. Genet. 80: 226–304.CrossRefGoogle Scholar
  18. Nevo E. and Beiles A. 1989. Genetic diversity of wild emmer wheat in Israel and Turkey. Theor. Appl. Genet. 77: 421–455.CrossRefGoogle Scholar
  19. Parker K.C. and Hamrick J.L. 1992. Genetic diversity and clonal structure in a columnar cactus,Lophocereus schottii. Am. J. Bot. 79: 86–96.Google Scholar
  20. Pascual L., Perfectti F., Gutierrez M. and Vargas A.M. 1993. Characterizing isozymes of Spanish cherimoya cultivars. HortScience 28: 845–847.Google Scholar
  21. Percy R.G. and Wendel J.F. 1990. Allozyme evidence for the origin and diversification ofGossypium barbadense L. Theor. Appl. Genet. 79: 529–542.CrossRefGoogle Scholar
  22. Perfectti F. and Camacho J.P.M. 1999. Analysis of genotypic differences in developmental stability inAnnona cherimola. Evolution 53: 1396–1405.Google Scholar
  23. Perfectti F. and Pascual L. 1996. Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill.). Theor. App. Genet. 93: 440–446.CrossRefGoogle Scholar
  24. Perfectti F. and Pascual L. 1998. Characterization of cherimoya germplasm by isozyme markers. Fruit Var. J. 52: 53–62.Google Scholar
  25. Perfectti F. and Pascual L. 1998. Genetic linkage studies of isozyme inAnnona cherimola. Hereditas 128: 87–90.CrossRefGoogle Scholar
  26. Rice W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.Google Scholar
  27. Smith J.S.C., Goodman M.M. and Stuber C.W. 1985. Relationships between maize and teosinte of Mexico and Guatemala: numerical analysis of allozyme data. Economic Botany 39: 12–24.Google Scholar
  28. Sneath P.H.A. and Sokal R.R. 1973. Numerical Taxonomy. Freeman, San Francisco.Google Scholar
  29. Soltis D.E., Haufler C.H., Darrow D.C. and Gastony G.S. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and staining schedules. Am. Fern J. 73: 9–27.Google Scholar
  30. Tersac M., Blanchard P., Brunel D. and Vincourt P. 1994. Relations between heterosis and enzymatic polymorphism in populations of cultivated sunflowers (Helianthus annuus L.). Theor. Appl. Genet. 88: 49–55.CrossRefGoogle Scholar
  31. Thomson P.H. 1970. The Cherimoya in California. California Rare Fruits Growers Handbook, pp. 20–34.Google Scholar
  32. Torres A.M. 1990. Isozyme analysis of tree fruits. In: Soltis D.E. and Soltis P.S. (eds), Isozymes in Plant Biology, Dioscoridess Press, Portland, OR, USA, pp. 192–205.Google Scholar
  33. Tuwafe S., Kahler A.L. and Ferguson M. 1988. Inheritance and geographical distribution of allozyme polymorphisms in chickpea (Cicer aerietinum L.). J. Hered. 79: 170–174.Google Scholar
  34. Weeden N.F. 1989. Applications of isozymes in plant breeding. Plant Breed. Rev. 6: 11–54.Google Scholar
  35. Wendel J.F., Brubaker C.L. and Percival A.E. 1992. Genetic diversity inGossypium hirsutum and the origin of upland cotton. Am. J. Bot. 79: 1291–1310.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Francisco Perfectti
    • 1
  • Luis Pascual
    • 1
  1. 1.Departamento de Genéetica, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations