Advertisement

Genetic Resources and Crop Evolution

, Volume 52, Issue 1, pp 97–109 | Cite as

Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.: A study using mtDNA RFLP

  • B. Khadari
  • C. Grout
  • S. Santoni
  • F. Kjellberg
Article

Abstract

Patterns of mitochondrial DNA (mtDNA) variation revealed by RFLP were investigated for 63 individuals of the common fig, Ficus carica L., in 15 supposedly natural populations throughout the Mediterranean basin. Fifteen haplotypes were detected using one restriction enzyme (HindIII) and four probes (atpα, coxIII, nad3rpsl2 and rps12). Mitochondrial diversity within populations varied from monomorphic to entirely polymorphic and population differentiation was high (FST = 0.323, P < 10−5). Seven groups of populations were defined on the basis of genetic and geographic proximity and lead to significant pairwise FST estimates except for the Corsican group which was similar to the Moroccan one. Fig populations were structured into three clusters: Balearic, West and East Mediterranean gene pools. The low diversity and strong differentiation of the Balearic populations strongly supports an ancient origin and the presence of natural populations in this area before domestication. Significant genetic differentiation between the West and East Mediterranean probably also reflects a diversification of the common fig over the Mediterranean basin preceding domestication. In contrast, Italian island populations seem to result from introduced cultivated fig since they present continental haplotypes. Our study represents a first mtDNA polymorphism survey and these indications should be confirmed by analysing local cultivated forms from the Baleares and from Italian islands and further natural populations from the East Mediterranean.

Key words

Common fig Domestication Ficus carica L. Genetic structure mtDNA RFLP Natural population Subspontaneous forms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belhassen E., Atlan A., Couvet D., Gouyon P.H. and Quétier F. 1993. Mitochondrial genome of Thymus vulgaris L. (Labiatae) is highly variable between and among natural populations. Heredity 71: 462–472.Google Scholar
  2. Belkhir K. 1999. Genetix, Version 4.0. A windows Program for Population Genetix Analysis. Laboratoire Génome, Populations, Interactions. CNRS UPR 9060, Université Montpellier II, Montpellier, France.Google Scholar
  3. Besnard G., Khadari B., Villemur P. and Bervillé A. 2000. Cytoplasmic male sterility in the olive (Olea europaea L.). Theor. Appl. Genet. 100: 1018–1024.Google Scholar
  4. Besnard G., Baradat P., Breton C., Khadari B. and Bervillé A. 2001. Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs. Genet. Sel. Evol. 33: S251–268.Google Scholar
  5. Besnard G., Khadari B., Baradat P. and Bervillé A. 2002a. Olea europaea phylogeography based on chloroplast DNA polymorphism. Theor. Appl. Genet. 104: 1353–1361.Google Scholar
  6. Besnard G., Khadari B., Baradat P. and Bervillé A. 2002. Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor. Appl. Genet. 105: 139–144.Google Scholar
  7. Brennicke A., Moller S. and Blanz P. 1985. The 18S and 5S ribosomal RNA genes on Oenothera mitochondria: Sequence rearrangments in the 18S and 5S rRNA genes of higher plants. Mol. Gen. Genet. 198: 404–410.Google Scholar
  8. Chat J., Chalak L. and Petit R.J. 1999. Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of Kiwifruit. Theor. Appl. Genet. 99: 314–322.Google Scholar
  9. Corriveau J.L. and Coleman A.W. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results over 200 angiosperm species. Am. J. Bot. 75: 1443–1458.Google Scholar
  10. Dewey R.E., Schuster W., Levings C.S.III and Tymothy D.H. 1985. Nucleotide sequence of the Fo-ATPase proteolipid (subunit 9) gene of maize mitochondria. Proc. Natl. Acad. Sci. USA 82: 1015–1019.Google Scholar
  11. Dumolin-Lapègue S., Demesure B., Fineschi S., Le Corre V. and Petit R.J. 1997. Phylogeographic structure of white oaks throughout the Europe continent. Genetics 146: 1475–1487.PubMedGoogle Scholar
  12. Felsenstein J. 1995. Phylip (Phylogeny Inference Package) version 3.57c. Department of Genetics, University of Washington, Seattle, WA.Google Scholar
  13. Hamrick J.L., Godt M.J.W. and Sherman-Broyles S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New For. 6: 95–124.Google Scholar
  14. Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linnean Soc. 58: 247–276.Google Scholar
  15. Hiesel R., Schobel W., Schuster W. and Brennicke A. 1987. The cytochrome oxidase subunit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences. EMBO J. 6: 26–34.Google Scholar
  16. Huntley B. and Birks H.J.B. 1983. An Atlas of Past and Present Pollen Maps for Europe: 0–13,000 years ago. Cambridge University Press, Cambridge, UK.Google Scholar
  17. Jenczewski E., Prosperi J.M. and Ronfort J. 1999. Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Amer. J. Bot. 86: 677–687.Google Scholar
  18. Jenczewski E., Prosperi J.M. and Ronfort J. 1999. Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes. Mol. Ecol. 8: 1317–1330.Google Scholar
  19. Kislev M.E. 1997. Early agriculture and palaeoecology of Netiv Hagdud. In: Bar-Yosef O. and Gopher A. (eds), An Early Neolithic Village in the Jordan Valley. Part 1: Archaeology of Netiv Hagdud, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA, pp. 201–236.Google Scholar
  20. Laurent V., Risterucci A.M. and Lanaud C. 1993. Chloroplast and mitochondrial DNA diversity in Theobroma cacao. Theor. Appl. Genet. 87: 81–88.Google Scholar
  21. Le Corre V., Dumolin-Lapègue S. and Kremer A. 1997. Genetic variation at allozyme and RAPD locus in sessile oak Quercus Petraea (Matt.) Liebl.: the role of history and geography. Mol. Ecol. 6: 1–11.Google Scholar
  22. Lelandais C., Guttieres S., Mathie C., Vedel F., Remacle C., Maréchal-Drouard L., Brennicke A., Binder S. and Chétrit P. 1996. A promotor element active in run-off transcription controls the expression of two cistrons of nad and rps genes in Nicotiana sylvestris mitochondria. Nucleic Acids Res. 24: 4798–4804.Google Scholar
  23. Lumaret R. and Ouazzani N. 2001. Ancient wild olives in Mediterranean forests. Nature 413: 700.Google Scholar
  24. Luo H., Van Coppenolle B., Seguin M. and Boutry M. 1995. Mitochondrial DNA polymorphism and phylogenetic relationships in Hevea brasiliensis. Mol. Breeding 1: 51–63.Google Scholar
  25. McCauley D.E. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol. Evol. 10: 198–202.Google Scholar
  26. Muller M.H., Prosperi J.M., Santoni S. and Ronfort J. 2001. How mitochondrial DNA diversity can help to understand the dynamics of wild-cultivated complexes. The case of Medicago sativa in Spain. Mol. Ecol. 10: 2753–2763.Google Scholar
  27. Nei M. 1978. Estimation of average heterozygosity and genetic distances from a small number of individuals. Genetics 89: 583–590.Google Scholar
  28. Palmer J.D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Amer. Nat. 130: s6–s29.Google Scholar
  29. Palmer J.D. 1992. Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis P.S., Soltis D.E. and Doyle J.J. (eds), Molecular Systematics of Plants, Chapman and Hall, New York, NY, pp. 36–49.Google Scholar
  30. Pons O. and Petit R.J. 1995. Estimation, variance and optimal sampling of gene diversity. I. Haploid locus. Theor. Appl. Genet. 90: 462–470.Google Scholar
  31. Raymond M. and Rousset F. 1995a. Genepop: population genetics software for exact test and ecumenicism. J. Hered. 86: 248–249.Google Scholar
  32. Raymond M. and Rousset F. 1995. An exact test for population differentiation. Evolution 49: 1280–1283.Google Scholar
  33. Ronfort J., Saumitou-Laprade P., Cuguen J. and Couvet D. 1995. Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp. carota. Theor. Appl. Genet. 91: 150–159.Google Scholar
  34. Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  35. Sarpaki A. 1995. Toumba Balomenou, Chaeronia: plant remains from the Early and Middle Neolithic levels. In: Kroll H. and Pasternak R. (eds), Res. Archaeobotanicae, International Workgroup for Palaeoethnobotany, Proceedings of the 9th symposium, Kiel 1992, Oetker-Voges, Kiel, pp. 5–15.Google Scholar
  36. Schuster W. and Brennicke A. 1986. Pseudocopies of the ATPase α-subunit gene in Oenothera mitochondria are present on different circular molecules. Mol. Gen. Genet. 204: 29–35.Google Scholar
  37. Schuster W., Wissinger B., Unseld M. and Brennicke A. 1990. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. EMBO J. 9: 263–269.Google Scholar
  38. Sinclair W.T., Morman J.D. and Ennos R.A. 1998. Multiple origins for Scots pine (Pinus sylvestris L.) in Scotland: evidence from mitochondrial DNA variation. Heredity 80: 233–240.CrossRefGoogle Scholar
  39. Taberlet P., Fumagalli L., Wust-Saucy A.G. and Cosson J.F. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7: 453–464.Google Scholar
  40. Tai T.H. and Tanksley S.D. 1990. A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol. Biol. Rep. 8: 297–303.Google Scholar
  41. Terral J.F. and Arnold-Simard G. 1996. Beginnings of olive cultivation in eastern Spain in relation to Holocene bioclimatic changes. Quat. Res. 46: 176–185.Google Scholar
  42. Tomaru N., Takahashi M., Tsumura Y., Takahashi M. and Ohba K. 1998. Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Amer. J. Bot. 85(5): 629–636.Google Scholar
  43. Valdeyron G., Kjellberg F., Ibrahim M., Raymond M. and Valizadeh M. 1985. A one species-one population plant: how does the common fig escape genetic diversification? In: Jacquard P., Heim G. and Antonovics J. (eds), Genetic Differentiation and Dispersal in Plants, Springer-Verlag, Berlin, pp. 383–393.Google Scholar
  44. Vitart V., de Paepe R., Mathieu C., Chetrit P. and Vedel F. 1992. Amplification of substoichiometric recombinant mitochondrial DNA sequences in a nuclear, male sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol. Gen. Genet. 233: 193–200.Google Scholar
  45. Wissinger B., Schuster W. and Brennicke A. 1991. Trans-splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. Cell 65: 473–482.PubMedGoogle Scholar
  46. Zohary D. and Hopf M. 2000. Domestication of Plants in the Old World. 3rd edn. Oxford, University Press.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • B. Khadari
    • 1
    • 2
  • C. Grout
    • 1
    • 3
  • S. Santoni
    • 3
  • F. Kjellberg
    • 4
  1. 1.Conservatoire Botanique National Méditerranéen de Porquerolles, Parc National de Port-CrosHyères cedexFrance
  2. 2.UMR Biologie du Développement des Espèces Pérennes Cultivées (BEPC), INRAMontpellier cedex 1France
  3. 3.UMR Diversité et Génome des Plantes Cultivées INRAMontpellier cedex 1France
  4. 4.Centre d’Ecologie Fonctionnelle et Evolutive, CNRSMontpellier Cedex 5France

Personalised recommendations