Advertisement

Genetic Resources and Crop Evolution

, Volume 52, Issue 1, pp 53–68 | Cite as

Diversity and genetic resources of wild Vigna species in India

  • I. S. Bisht
  • K. V. Bhat
  • S. Lakhanpaul
  • M. Latha
  • P. K. Jayan
  • B. K. Biswas
  • A. K. Singh
Article

Abstract

Diversity in morphological characters of 206 accessions of 14 wild Vigna species from India was assessed. Of these, 12 species belonged to Asian Vigna in the subgenus Ceratotropis and two were V. vexillata and V. pilosa belonging to subgenus Plectotropis and Dolichovigna, respectively. Data on 71 morphological traits, both qualitative and quantitative, were recorded. Data on 45 qualitative and quantitative traits exhibiting higher variation were subjected to multivariate analysis for establishing species relationships and assessing the pattern of intraspecific variation. Of the three easily distinguishable groups in the subgenus Ceratotropis, all the species in mungo-radiata group, except V. khandalensis, viz. V. radiata var. sublobata, V. radiata var. setulosa, V. mungo var. silvestris and V. hainiana showed greater homology in vegetative morphology and growth habit. The species, however, differed in other plant, flower, pod and seed characteristics. Within species variation was higher in V. mungo var. silvestris populations and three distinct clusters could be identified in multivariate analysis. V. umbellata showed more similarity to V. dalzelliana than V. bourneae and V. minima in the angularis-umbellata (azuki bean) group. Within species variations was higher in V. umbellata than other species in the group. In the aconitifolia-trilobata (mothbean), V. trilobata populations, were more diverse than V. aconitifolia. The cultigens of the conspecific wild species were more robust in growth, with large vegetative parts and often of erect growth with three- to five-fold increase in seed size and seed weight, except V. aconitifolia, which has still retained the wild type morphology to a greater extent. More intensive collection, characterisation and conservation of species diversity and intraspecific variations, particularly of the close wild relatives of Asian Vigna with valuable characters such as resistance to biotic/abiotic stresses, more number of pod bearing clusters per plant etc. assumes great priority in crop improvement programmes.

Key words

Ceratotropis Genetic resources Intraspecific diversity Morphological variation Wild Asian Vigna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVRDC 1990. AVRDC Progress Report 1989. Asian Vegetable Research and Development Centre, Shanhua, Tainan, Taiwan, 350 p.Google Scholar
  2. Ahuja M.R. and Singh B.V. 1977. Induced genetic variability in mung bean through interspecific hybridization. Indian J. Genet. Plant Breed. 37: 133–136.Google Scholar
  3. Arora R.K. 1985. Diversity and collection of wild Vigna species in India. FAO/IBPGR Plant Genet. Resour. Newslett. 63: 26–35.Google Scholar
  4. Arora R.K., Chandel K.P.S. and Joshi B.S. 1973. Morphological diversity in Phaseolus sublobatus Roxb. Curr. Sci. 42: 359–361.Google Scholar
  5. Babu C.R., Johri B.M. and Sharma S.K. 1985. Leguminosae-Papilionoideae: Tribe-Phaseoleae. Bull. Bot. Surv. India 27: 1–28.Google Scholar
  6. Baudet J.C. 1974. Signification taxonomique des caracteres blastogeniques dans la tribu des Papilionaceae-Phaseoleae Bull. Jard. Bot. Nat. Belg. 44: 259–293.Google Scholar
  7. Baudoin J.P. and Marechal R. 1988. Taxonomy and evolution of the genus Vigna. In: Shanmugasundaram S. and McLean B.T. (eds), Mungbean: Proceedings of the Second International Symposium, AVRDC, Shanhua, Tainan, Taiwan, pp. 2–12.Google Scholar
  8. Bisht I.S., Bhat K.V., Jayan P.K., Abraham Z., Biswas B.K. and Pandiyan M. 2003. Distribution, diversity and species relationships of wild Vigna species in mungo-radiata complex in India. Plant Genet. Resour. Newslett. (submitted for publication).Google Scholar
  9. Bisht I.S., Bhat K.V., Lakhanpaul S., Biswas B.K., Ram B. and Singh A.K. 2002. The use of core collection for genetic enhancement of mungbean (Vigna radiata (L.) Wilczek). Euphytica (submitted for publication).Google Scholar
  10. Chandel K.P.S., Lester R.N. and Starling R.J. 1984. The wild ancestors of urd and mung beans (Vigna mungo (L.) Hepper and V. radiata (L.) Wilczek). Bot. J. Linnean Soc. 89: 85–96.Google Scholar
  11. Dana S. 1964. Interspecific cross between tetraploid Phaseolus species and P. riccardianus Ten. Nucleus 7: 1–10.Google Scholar
  12. Dana S. 1966. The cross between Phaseolus aureus Roxb. and P. mungo L. Genetica 37: 259–274.Google Scholar
  13. Federer W.T. 1956. Augmented (or Hoonuoaku) Designs. The Hawaiian Planter’s Record, vol. IV, 2nd edn., pp. 191–208.Google Scholar
  14. Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package). Version 3.60. Seattle Department of Genetics, University of Washington.Google Scholar
  15. Goel S., Raina S.N. and Ogihara Y. 2001. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus-Vigna complex. Mol. Phylogenet. Evol. 1037: 1–19.Google Scholar
  16. Ignacimuthu S. and Babu C.R. 1984. Breeding potential of Vigna sublobata (Roxb.) Babu and Sharma in the improvement of mungbean. Curr. Sci. 53: 786–788.Google Scholar
  17. Ignacimuthu S. and Babu C.R. 1987. Vigna radiata var. sublobata (Fabaceae): Economically useful wild relative of urd and mung beans. Econ. Bot. 41: 418–422.Google Scholar
  18. Jaaska V. and Jaaska V. 1990. Isoenzyme variation in Asian Beans. Bot. Acta 103: 281–290.Google Scholar
  19. Jain H.K. and Mehra K.L. 1980. Evolution, adaptation, relationships and uses of species of Vigna cultivated in India. In: Summerfield R.J. and Bunting A.H. (eds), Advances in Legume Sciences, vol. 1, pp. 459–468.Google Scholar
  20. Kaga A., Tomooka N., Egawa Y., Hosaka K. and Kamijima O. 1996. Species relationships in the subgenus Ceratotropis (genus Vigna ) as revealed by RAPD analysis. Euphytica 88: 17–24.Google Scholar
  21. Konarev A., Tomooka N. and Vaughan D.A. 2000. Proteinase inhibitor polymorphism in the genus Vigna subgenus Ceratotropis and its biosystematic implications. Euphytica (in press).Google Scholar
  22. Lawn R. 1995. The Asiatic Vigna species. In: Smartt J. and Simmonds N.W. (eds), The Evolution of Crop Plants. 2nd edn. Longman, Harlow, UK, pp. 321–326.Google Scholar
  23. Lukoki L., Marechal R. and Otoul E. 1980. Les ancetres sauvages des haricots cultives: Vigna radiata (L.), Wilczek et V. mungo (L.) Hepper. Bull. Jard. Bot. Belg. 50: 385–391.CrossRefGoogle Scholar
  24. Maekawa F. 1955. Topo-morphological and taxonomical studies in Phaseoliae, Leguminosae. Jap. J. Bot. 15: 103–116.Google Scholar
  25. Marechal R., Mascharpa J.M. and Stainier F. 1978. Etude taxonomique d’un groupe complexe d’especes des geres Phaselolus et Vigna (Papilionaceae) sur la base de donn’ees morphlogiques, traitees par l’ analyse informatique. Boissiera 28: 1–273.Google Scholar
  26. Miyazaki S. 1982. Classification and phylogenetic relationships of the Vigna radiata-mungo, sublobata complex. Bull. Nat. Int. Agr. Sci. Series D, No. 33. Ibaraki, Japan, pp. 61.Google Scholar
  27. Rohlf F.J. 1992. NTSYS-PC — Numerical Taxonomy and Multivariate Analysis System. Version 1.80. Exeter Software, New York.Google Scholar
  28. Singh D.P. 1994. Breeding for resistance to diseases in mungbean: Problems and prospects. In: Asthana A.N. and Kim D.H. (eds), Recent Advances in Mungbean Research, Indian Society of Pulses Research (IIPR), Kanpur, India, 152–164.Google Scholar
  29. Smartt J. 1990. Grain Legumes. Evolution and Genetic Resources. Cambridge University Press, 379 pp.Google Scholar
  30. Srinives P., Haulpalai N., Saengchot S. and Ngampongsai S. 1999. The use of wild relatives and gamma radiation in mungbean and blackgram breeding. In: Wild Legumes, The VII MAAF International Workshop on Genetic Resources, NIAB, Japan, pp. 205–218.Google Scholar
  31. Talekar N.S. 1994. Sources of resistance to major insect pests of mungbean in Asia. In: Asthana A.N. and Kim D.H. (eds), Recent Advances in Mungbean Research, Indian Society of Pulses Research (IIPR), Kanpur, India, pp. 40–49.Google Scholar
  32. Tateishi Y. 1996. Systematics of the species of Vigna subgenus Ceratotropis. In: Srinives P. Kitbamroong C. and Miyazaki S. (eds), Mungbean Germplasm: Collection, Evaluation and Utilization for Breeding Program, JIRCAS, pp. 9–24.Google Scholar
  33. Tomooka N., Lairungreang C., Nakeeraks P. and Egawa Y. 1996. Taxonomic position of wild Vigna species collected in Thailand based on RAPD analysis. In: Srinives P. Kitbamroong C. and Miyazaki S. (eds), Mungbean Germplasm: Collection, Evaluation and Utilization for Breeding Program, JIRCAS, pp. 31–40.Google Scholar
  34. Tomooka N., Egawa Y. and Kaga A. 2000. Biosystematics and genetic resources of the genus Vigna subgenus Ceratotropis. In: Vaughan D., Tomooka N. and Kaga A. (eds), The Seventh MAFF International Workshop on Genetic Resources. Part 1. Wild Legumes, Ministry of Agriculture, Forestry and Fisheries and National Institute of Agrobiological Resources, Japan, pp. 37–62.Google Scholar
  35. Tomooka N., Vaughan D.A., Moss H. and Maxted N. 2003. The Asian Vigna: Genus Vigna subgenus Ceratotropis Genetic Resources. Kluwer Academic Publishers, 288 pp.Google Scholar
  36. Verdcourt B. 1970. Studies in the Leguminosae-Papilionoideae for the flora of tropical East Africa. IV. Kew Bull. 24: 507–560.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • I. S. Bisht
    • 1
  • K. V. Bhat
    • 1
  • S. Lakhanpaul
    • 1
  • M. Latha
    • 2
  • P. K. Jayan
    • 2
  • B. K. Biswas
    • 1
  • A. K. Singh
    • 1
  1. 1.National Bureau of Plant Genetic Resources, Pusa CampusNew DelhiIndia
  2. 2.National Bureau of Plant Genetic Resources, Regional StationVellanikkara, Thrissur, KeralaIndia

Personalised recommendations