Genetic Resources and Crop Evolution

, Volume 52, Issue 1, pp 21–31

Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers

  • Maher Medini
  • Sonia Hamza
  • Ahmed Rebai
  • Michael Baum
Article

Abstract

Thirty-four durum wheat cultivars representing the Tunisian durum (Triticum durum Desf.) wheat collection and seven wild species of wheat relatives (Triticum turgidum L., T. dicoccon Schrank., T. dicoccoides (Körn) Schweinf., T. araraticum Jakubz., T. monococcum L., Aegilops geniculata Roth, and Aegilops ventricosa Tausch) were analysed with amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. Both marker systems used were able to differentiate durum wheat cultivars from the wild relatives and to specifically fingerprint each of the genotypes studied. However, the two marker systems differed in the amount of detected polymorphisms. The 15 SSR markers were highly polymorphic across all the genotypes. The total number of amplified fragments was 156 and the number of alleles per locus ranged from 3 to 24 with an average of 10.4. Two SSR markers alone, Xwms47 and Xwms268, were sufficient to distinguish all 34 durum wheat genotypes. The five AFLP primer pair combinations analysed yielded a total of 293 bands, of which 31% were polymorphic. The highest polymorphic information content (PIC) value was observed for SSRs (0.68) while the highest marker index (MI) value was for AFLPs (7.16) reflecting the hypervariability of the first and the distinctive nature of the second system. For durum wheat cultivars, the genetic similarity values varied between 31.3 and 81% for AFLPs (with an average of 54.2%), and between 3.6 and 72.7% for SSRs (with an average of 19.9%). The rank correlation between the two marker systems was moderate, with r = 0.57, but highly significant. Based on SSR markers, highest genetic similarity (GS) values were observed within the modern cultivars (37.3%), while the old cultivars showed a low level of GS (19.9%). Moreover, the modern cultivars showed low PIC and MI values. UPGMA Cluster analysis based on the combined AFLP and SSR data separated the wild wheat species from the durum wheat cultivars. The modern cultivars were separated from the old cultivars and form a distinct group.

Key words

AFLP Durum wheat Genetic diversity Microsatellite SSR Triticum durum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi H., Yokozeki Y., Inagaki A. and Fugimura T. 1997. Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet. 94: 61–67.PubMedGoogle Scholar
  2. Autrique E., Nachit M.M., Monneveux P., Tanksley S.D. and Sorrells M.E. 1996. Genetic diversity in durum wheat based on RFLP, morphophysiological traits and coefficient of parentage. Crop Sci. 36: 735–742.CrossRefGoogle Scholar
  3. Barrett B.A. and Kidwell K.K. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the pacific Northwest. Crop Sci. 38: 1261–1271.CrossRefGoogle Scholar
  4. Bœuf F. 1932. Le blé en Tunisie. ‘La plante, le milieu physicochimique’. Revue de l’INRAT 1: 4–67.Google Scholar
  5. Bohn M., Utz H.F. and Melchinger A.E. 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci. 39: 228–237.CrossRefGoogle Scholar
  6. Cox T.S., Lookhart G.L., Walker D.E., Harrell L.G., Albers L.D. and Rodgers D.M. 1985. Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide gel electrophoretic patterns. Crop Sci. 25: 1058–1063.CrossRefGoogle Scholar
  7. Deghaïs M., Gharbi M.S., Faleh M., Zarkouna T. and Chakroun M. 1998. Les acquis de l’amé lioration génétique des céréales en Tunisie. Actes du 3eme Séminaire International sur la ‘Technologie’. Centenaire de l’INAT.Google Scholar
  8. Dograr N., Akin-Yalin S. and Akkaya M.S. 2000. Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breed. 119: 360–362.Google Scholar
  9. Donini P., Law J.R., Koebner R.M.D., Reeves J.C. and Cooke R.J. 2000. Temporal trends in the diversity of UK wheat. Theor. Appl. Genet. 100: 912–917.Google Scholar
  10. Eujayl I., Sorrels M.E., Baum M., Wolters P. and Powell W. 2002. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet. 104: 399–407.PubMedGoogle Scholar
  11. Guadagnuolo R., Savova Bianchi D. and Felber F. 2001. Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44: 610–621.PubMedGoogle Scholar
  12. Incirli A. and Akkaya M.S. 2001. Assessment of genetic relationships in durum wheat cultivars using AFLP markers. Genet. Resour. Crop Evol. 48: 233–238.Google Scholar
  13. Jakše J., Kindlhofer K. and Javornik B. 2001. Assessment of genetic variation and differentiation of hope genotypes by microsatellite and AFLP markers. Genome 44: 773–782.PubMedGoogle Scholar
  14. Karmous C., Slim-Amara H. and Daaloul A. 2002. Etude de quelques critères physiologiques de sélection in vitro pour la tolérance à la salinité chez le blé dur (Triticum durum Desf.). Revue de l’INAT 17: 18–24.Google Scholar
  15. Kempthorne O. 1969. An Introduction to Genetic Statistics. Iowa State University Press, Ames, Iowa.Google Scholar
  16. Kendall M.G. and Stuart A. 1979. The Advanced Theory of Statistics, vol. 2. 3rd edn. Griffin, London.Google Scholar
  17. Lübberstedt T., Melchinger A.E., Dußle C., Vuylsteke M. and Kuiper M. 2000. Relationships among early European maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci. 40: 783–791.CrossRefGoogle Scholar
  18. Manifesto M.M., Schlatter A.R., Hopp H.E., Suárez E.Y. and Dubcovsky J. 2001. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci. 41: 682–690.CrossRefGoogle Scholar
  19. Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.PubMedGoogle Scholar
  20. Morgante M., Hanafey M. and Powell W. 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30: 194–200.PubMedGoogle Scholar
  21. Nei M. and Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 79: 5269–5273.Google Scholar
  22. Pillen K., Binder A., Kreuzkam B., Ramsay L., Waugh R., Förster J. and Léon J. 2000. Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor. Appl. Genet. 101: 652–660.Google Scholar
  23. Plaschke J., Ganal M.W. and Röder M.S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001–1007.Google Scholar
  24. Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S. and Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238.Google Scholar
  25. Pujar S., Tamhankar S.A., Rao V.S. and Gupta V.S. 1999. Arbitrarily primed-PCR based diversity assessment reflects hierarchical groupings of Indian tetraploid wheat genotypes. Theor. Appl. Genet. 99: 868–876.Google Scholar
  26. Rezgui S., Yahyaoui A., Daaloul A., Slim-Amara H., Nachit M. and Amri A. 1998. Relative performance of selected durum wheat in the semi-arid regions. Proceedings of the International Wheat Genetic Symposium. Sasketchewan, Canada, vol. 2, pp. 326–328.Google Scholar
  27. Rohlf F.J. 2000. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.1, Exeter Publications, New York, USA.Google Scholar
  28. Röder M.S., Plaschke J., König S.U., Börner A., Sorrells M.E., Tanksley S.D. and Ganal M.W. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet. 246: 327–333.PubMedGoogle Scholar
  29. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P. and Ganal M.W. 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  30. Russell J.R., Fuller J.D., Macaulay M., Hatz B.G., Jahoor A., Powell W. and Waugh R. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95: 714–722.Google Scholar
  31. Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A. and Allard R.W. 1984. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014–8019.PubMedGoogle Scholar
  32. Saghai-Maroof M.A., Biyashev R.M., Yang G.P., Zhang Q. and Allard R.W. 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diveristy, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91: 5466–5470.PubMedGoogle Scholar
  33. Soleimani V.D., Baum B.R. and Johnson D.A. 2002. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor. Appl. Genet. 104: 350–357.PubMedGoogle Scholar
  34. Sourdille P., Tavaud M., Charmet G. and Bernard M. 2001. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor. Appl. Genet. 103: 346–352.Google Scholar
  35. Stachel M., Lelley T., Grausgruber H. and Vollmann J. 2000. Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor. Appl. Genet. 100: 242–248.Google Scholar
  36. Van de Peer Y. and De Wachter R. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10: 569–570.PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Maher Medini
    • 1
  • Sonia Hamza
    • 1
  • Ahmed Rebai
    • 2
  • Michael Baum
    • 3
  1. 1.Laboratory of Genetics and Plant BreedingInstitut National Agronomique de TunisieTunisTunisia
  2. 2.Laboratory of Plant Protection and TransformationCentre de Biotechnologie de Sfax, BP ‘K’SfaxTunisia
  3. 3.ICARDA, Germplasm ProgramAleppoSyria

Personalised recommendations