Genetic Resources and Crop Evolution

, Volume 51, Issue 8, pp 815–825 | Cite as

Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers

  • Cecilia Y. Kato
  • Chifumi Nagai
  • Paul H. Moore
  • Francis Zee
  • Minna S. Kim
  • Denise L. Steiger
  • Ray Ming


Pineapple (Ananas comosus (L.) Merr.) cultivars, often derived from somatic mutations, are propagated vegetatively. It has been suggested by isozyme data that there is little genetic variation among Smooth Cayenne cultivars. A thorough investigation of the genetic variation within the cultivated speciesAnanas comosus, particularly among commercial cultivars, will provide critical information needed for crop improvement and cultivar protection. One-hundred and forty-eight accessions ofA. comosus and 14 accessions of related species were evaluated with AFLP markers. The average genetic similarity ofA. comosus was 0.735 ranging from 0.549 to 0.972, suggesting a high degree of genetic variation within this species. With AFLP markers, discrete DNA fingerprints were detected for each commercial cultivar, breeding line, and intra-specific hybrid. Self-incompatibility, high levels of somatic mutation, and intraspecific hybridization may account for this high degree of variation. However, major cultivar groups of pineapple, such as Cayenne, Spanish, and Queen, could not be distinctively separated. These cultivar groups are based on morphological similarity, and the similar appearance can be caused by a few mutations that occurred on different genetic background. Our results suggest that there is abundant genetic variation within existing pineapple germplasm for selection, and discrete DNA fingerprinting patterns for commercial cultivars can be detected for cultivar protection. The genetic diversity and relationships of fourAnanas species are also discussed.

Key words

Ananas DNA fingerprinting Genetic diversity Germplasm Molecular phylogeny pineapple 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aradhya M.K., Zee F. and Manshardt R.M. 1994. Isozyme variation in cultivated and wild pineapple. Euphytica 79: 87–99.CrossRefGoogle Scholar
  2. Brewbaker J.L. and Gorrez D.D. 1967. Genetics of self-incompatibility in the monocot genera,Ananas (pineapple) andGasteria. Am. J. Bot. 54: 611–616.Google Scholar
  3. Breyne P., Rombaut D., van Gysel A., van Montagu M. and Gerats T. 1999. AFLP analysis of genetic diversity within and betweenArabidopsis thaliana ecotypes. Mol. Gen. Genet. 261: 627–636.CrossRefPubMedGoogle Scholar
  4. Cervera M.T., Cabezas J.A. and Sancha J.C. 1998. Application of AFLPs to the characterization of grapevineVitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor. Appl. Genet. 97: 51–59.CrossRefGoogle Scholar
  5. Chittenden L.M., Schertz K.F., Lin Y.R., Wing R.A. and Paterson A.H. 1994. A detainled RFLP map ofSorghum bicolor ×S. propinquum, suitable for high-density mapping, suggests ancestral duplication forSorghum chromosomes of chromosomal segments. Theor. Appl. Genet. 87: 925–933.CrossRefGoogle Scholar
  6. Collins J.L. 1949. History, taxonomy and culture of the pineapple. Econ. Bot. 3: 335–359.Google Scholar
  7. Collins J.L. 1960. The Pineapple. Interscience Publishers Inc., New York, USA.Google Scholar
  8. DeWald M.G., Moore G.A. and Sherman W.B. 1988. Identification of pineapple cultivars by isozyme genotypes. J. Am. Soc. Hort. Sci. 113: 935–938.Google Scholar
  9. DeWald M.G., Moore G.A. and Sherman W.B. 1992. Isozyme inAnanas (Pineapple): genetics and usefulness in taxonomy. J. Am. Soc. Hort. Sci. 117: 491–496.Google Scholar
  10. Duval M.F. and d’Eeckenbrugge G. 1993. Genetic variability in the genus Ananas. Acta Hort. 334: 27–32.Google Scholar
  11. Duval M.F., Noyer J.L., Perrier X., d’Eeckenbrugge G. and Hamon P. 2001. Molecular diversity in pineapple assessed by RFLP markers. Theor. Appl. Genet. 102: 83–90.CrossRefGoogle Scholar
  12. Han T., DeJeu M., VanEck H. and Jacobsen E. 2000. Genetic diversity of Chilean and BrazilianAlstroemeria species assessed by AFLP analysis. Heredity 84: 564–569.CrossRefPubMedGoogle Scholar
  13. Kaeppler S.M., Kaeppler H.F. and Rhee Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43: 179–188.CrossRefPubMedGoogle Scholar
  14. Kim M.S., Moore P.H., Zee F., Fitch M.M.M., Steiger D.L., Manshardt R.M., Paull R.E., Drew R.A., Sekioka T. and Ming R. 2003. Genetic diversity ofCarica papaya L. as revealed by AFLP markers. Genome 45: 503–512.CrossRefGoogle Scholar
  15. Kinjo K. 1993. Inheritance of leaf margin spine in pineapple. Acta Hort. 334: 59–66.Google Scholar
  16. Noyer J.L. 1991. Etude preliminaire de la diversite genetique du genreAnanas par les RFLPs. Fruits (numero specialAnanas): 372–375.Google Scholar
  17. Noyer J.L., Lanaud C., d’Eeckenbrugge D. and Duval M.F. 1995. RFLP study on rDNA variability inAnanas genus. Acta Hort. 425: 153–159.Google Scholar
  18. Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S. and Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238.CrossRefGoogle Scholar
  19. Ray I.M. and Bingham E.T. 1990. Inheritance of a mutable phenotype that is activated in alfalfa tissue culture. Genome 34: 35–40.Google Scholar
  20. Robinson J.P. and Harris S.A. 1999. Amplified fragment length polymorphisms and microsatellites: a phylogenetic perspective. In: Gillet E.M. (ed.), Molecular Tools for Biodiversity. Scholar
  21. Samuels G. 1970. Pineapple cultivars. Am. Soc. Hort. Sci. Proc. 14: 13–24.Google Scholar
  22. Sneath P.H.A. and Sokal R.R. 1973. Numerical Taxonomy. Freeman, San Francisco, USA.Google Scholar
  23. Sokal R.R. and Michener C.D. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409–1438.Google Scholar
  24. Steiger D.L., Nagai C., Moore P.H., Morden C.W., Osgood R.V. and Ming R. 2003. AFLP analysis of genetic diversity within and amongCoffea arabica cultivars. Theor. Appl. Genet. 105: 209–215.Google Scholar
  25. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: a new technique for DNA finger-printing. Nucleic Acids Res. 23: 4407–4414.PubMedGoogle Scholar
  26. Wakasa K. 1979. Variation in the plants differentiated from the tissue culture of pineapple. Jpn. J. Breed. 29: 13–22.Google Scholar
  27. Williams D.D.F. and Fleisch H. 1993. Historical review of pineapple breeding in Hawaii. Acta Hort. 334: 67–76.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Cecilia Y. Kato
    • 1
  • Chifumi Nagai
    • 1
  • Paul H. Moore
    • 3
  • Francis Zee
    • 4
  • Minna S. Kim
    • 2
  • Denise L. Steiger
    • 1
  • Ray Ming
    • 1
  1. 1.Hawaii Agriculture Research CenterAieaUSA
  2. 2.Department of Tropical Plant and Soil SciencesUniversity of HawaiiHonoluluUSA
  3. 3.Pacific Basin Agricultural Research CenterUSDA-ARSAieaUSA
  4. 4.Tropical Plant Genetic Resource Management UnitUSDA-ARS, PBARCHiloUSA

Personalised recommendations