Genetic Resources and Crop Evolution

, Volume 53, Issue 2, pp 419–429 | Cite as

Total Protein and Amino acid Compositions in the Acorns of Turkish Quercus L. Taxa

  • Tamer ÖzcanEmail author


Total protein content and level of 14 amino acid in mature acorns of 20 Quercus taxa from Turkey were studied. The range of total protein amounts between 2.75 and 8.44% were detected among taxa. Similar values in related species and variety level were observed. The amino acid profiles for each taxon were characteristically different and high variability of individual amino acid concentration was present at variety, subspecies and species levels. Different amino acid concentrations, relative percentages and critical values of some amino acids are thought to be additional considerable parameters for diagnosis of Quercus. Generally higher total quantity of amino acids in section Quercus and lower values in section Ilex were observed. When the essential and non-essential amino acids are expressed as a relative percent of total protein indicating quality of proteins, the ratios varied significantly among taxa (p < 0.05). But, no significant difference at section level were detected. Major amino acids were aspartic acid and glutamic acid showing the largest variations and the lowest levels were detected for methionine. Amino acid concentrations ranged from 1665 for aspartic acid to 13 mg/100 g dry wt. for methionine. All taxa had relatively higher amounts of leucin, lysin and valine than other essential amino acids. The highest quantity of protein and amino acids was recorded for Q. infectoria ssp. boissieri and the lowest for Q. pontica. The level of all essential amino acids in examined taxa was not sufficient compared to FAO scoring pattern for children (1985). But, threonine and valine in Q. infectoria ssp. boissieri and isoleucine in Q. petraea ssp. iberica show remarkable concentrations to the requirements. All examined essential amino acids among taxa generally provide adequate levels for adults according to FAO standard.


Acorn Amino acid Composition Crude protein Kernel Nutrition Quercus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al Jassim, R.A.M., Ereifej, K.I., Shibli, R.A., Abudabos, A. 1998Utilization of concentrate diets containing acorns (Quercus aegilops and Quercus coccifera) and urea by growing Awassi lambsSmall Ruminant Res.29289293CrossRefGoogle Scholar
  2. Amer, W.M., Sheded, M. 1998Relationships within genus Senna in Egyptbased on variations in protein, free amino acid and rapd markersJ. Union Arab Biol.64762Google Scholar
  3. AOAC1990Official Methods of Analysis15Association of Official Analytical ChemistsWashington, DCGoogle Scholar
  4. Asensio, M.L., Valdés, E., Cabello, F. 2002Characterisation of some Spanish white grapevine cultivars by morphology and amino acid analysisSci. Hortic.93289299Google Scholar
  5. Bainbridge D.A. 1984. The grain that grows on trees. Mother Earth News, 80–84, September/October.Google Scholar
  6. Bainbridge D.A. 1986. Use of acorns for food in California: past, present, future. Multiple-use management of California’s hardwoods Symposium, November 12–14, San Luis Obispo, California.Google Scholar
  7. Bainbridge D.A. and Asmus K. 1986. Acorn Testers News 1(1). Riverside, CA. 8 pp.Google Scholar
  8. Baumgras, P. 1944Experimental feeding of captive fox squirrelsJ. Wildl. Manage8296Google Scholar
  9. Baytop, T. 1999Trkiye’de Bitkiler ile TedaviNobel Tp Kitabevleri LtdSti294296Google Scholar
  10. Bewley, D.J., Black, M. 1994Seeds Physiology of Development and Germination2Plenum PressNew York and LondonGoogle Scholar
  11. Bishop I. 1891. Journeys in Persia and Kurdistan. John Murray, London.Google Scholar
  12. Blakelock, R.A. 1950The Rustram Herbarium, Iraq Part IVKew Bulletin3375444Google Scholar
  13. Bohrer, V.L. 1972On the relation of harvest methods to early agriculture in the near EastEcon. Bot.16145155Google Scholar
  14. Bonner, F.T., Vozz, J.A. 1987Seed biology and technology of QuercusGen. Tech. Rep. SO- 66USDA Forest Service. Sothern Forest Experiment StationNew Orleans21Google Scholar
  15. Bolton, J., Nowakowski, T.Z., Lazarus, W. 1976Sulphur-nitrogen interaction effects on the yield and composition of the protein-N, non-protein-N, and soluble carbohydrates in perennial ryegrassJ. Sci. Food Agr.27553560Google Scholar
  16. Bordacs S. and Koranyi P. 1993. Electrophoretic Differentiation Possibilities within the Genus Quercus by Means of Protein Monomers. Silvae Genetica, an Institute for Agricultural Quality Control, Keleti Karoly u. 24, H-1024, Budapest, Hungary, 42(6): 285–288.Google Scholar
  17. Boren, J.C., Lochmiller, R.L., Leslie, D.M.,Jr., Engle, D.M. 1995Amino acid concentrations in seed of preferred forages of bobwhitesJ. Range Manage.48141144Google Scholar
  18. Boza, F., Fonolla, J., Varela, G. 1966Digestibilidad y valor nutritivo de la harina de bellota des ecada y entera en ovidosAvances Mejora Anim.7515518521 523Google Scholar
  19. Brandis D. 1972. Forest Flora of NW and Central India. Bishen Singh, Dehra Dun, India.Google Scholar
  20. Browics, K. 1982Chorology of Trees and Shurbs in South-west Asia and Adjacent RegionsPolish Scientific PublishersWarszawa, PoznańGoogle Scholar
  21. Brown, M.R., Jeffrey, S.W. 1992Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. amino acids sugars and pigmentsJ. Exp. Mar. Biol. Ecol.16191113CrossRefGoogle Scholar
  22. Cable D.R. 1975. Range management in the chaparral type and its ecological basis: the status of our knowledge. Res. Pap.RM-155. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 30 pp. [579].Google Scholar
  23. Chesnut, V.K. 1974Plants used by the Indians of Mendocino CountyContribution for the U.S. National Herbarium, v7, n repr. by Mendocino County Historical SocietyCaliforniaGoogle Scholar
  24. Cook, J.A., Vanderjagt, D.J., Pastuszyn, A., Mounkaila, G., Glew, R.S., Millson, M., Glew, R.H. 2000Nutrient and chemical composition of 13 wild plant foods of NigerJ. Food Compos Anal.138392CrossRefGoogle Scholar
  25. Cottrell, J.E., Munro, R.C., Tabbener, H.E., Gillies, A.C.M., Forrest, G.I., Deans, J.D., Lowe, A.J. 2002Distribution of chloroplast DNA variation in British Oaks (Quercus robur and Q. petraea): the influence of postglacial colonisation and human managementForest Ecol. Manage.156181195Google Scholar
  26. Coyle, J., Roberts, N.C. 1975A Field Guide to the Common Edible Plants of BajaNatural History Publishing CoCaliforniaGoogle Scholar
  27. De Boer F. and Bickel H. 1988. Livestock Feed Resources and Feed Evaluation in Europe. Copyright 1988.Google Scholar
  28. Duncan D.A. and Clawson W.J. 1980. Livestock utilization of California’s oak woodlands. In: Plumb Timothy R. Proceedings of the symposium on the ecology, management, and utilization of California oaks; 1979 June 26–28; Claremont, CA. Gen.Tech. Rep. PSW-44. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: pp. 306–313 [7051].Google Scholar
  29. FAO 1981. Energy and Protein Requirements. Food and Agriculture Organisation Rome, final draft.Google Scholar
  30. FAO/WHO/UNU 1985. Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation, Technical report series no. 724, World Health Organization, Geneva.Google Scholar
  31. Fernand, H., Kinsey, A. 1943Edible Wild Plants of Eastern North AmericaAcademic PressCornwall-on-Hudson, NYGoogle Scholar
  32. Hawkes, J.G. 1967Chemotaxonomy and SerotaxonomyAcademic PressLondonGoogle Scholar
  33. Hedge I.C. and Yaltrk F. 1982. In: Flora of Turkey and East Eagean Islands. Davis P.H.University Press, Edinburgh.Google Scholar
  34. Hedrick, U.P. 1919Sturtevant’s Notes on Edible PlantsReport of the New York Agric. Exp. Station, 20Albany, NYGoogle Scholar
  35. Heizer, R.F., Elasser, A.B. 1980The Natural World of the California IndiansU.C. PressBerkeley, CAGoogle Scholar
  36. Hill, A.R. 1937Economic BotanyMc-Graw-Hill Book Co. IncNew YorkGoogle Scholar
  37. Hoshiai, K. 1995World balance of dietary essential amino acids relative to the 1989 FAO/WHO protein scoring patternFood Nutr. Bull.1616677Google Scholar
  38. Karlsson, K.E. 1972Linkage studies on a gene for high lysine content in Hiproly barleyBarley Genet. Newsl.23436Google Scholar
  39. Lefevbre H. 1900. Les Fôrets de L’Algérie. Alger-Mustapha.Google Scholar
  40. Liang, Y., Ma, W., Lu, J., Wu, Y. 2001Comparison of chemical compositions of Ilex latifolia Thumb and Camellia sinensis LFood Chem.75339343CrossRefGoogle Scholar
  41. Lieutaghi P. 1998. La Plante Compagne 37. Actes Sud.Google Scholar
  42. Loudon, J.C. 1844Arboretum et FruticetumVol. IIILongman, Brown, Green and LongmanLondonGoogle Scholar
  43. Luk’yanets, V.B. 1978Content of Amino Acids in Acorns of Various Species and Climatypes of Oak, Leznoi ZhurnalLesotech Int. Bosonezh42932Google Scholar
  44. Manual hydrolysad 1998. Hamburg-Germany.Google Scholar
  45. McCulloch C.Y. 1973. Part I: Seasonal diets of mule and whitetailed deer. In: Deer nutrition in Arizona chaparral and desert habitats. Special Report No. 3. Phoenix, AZ: Arizona Game and Fish Department, 1–37 [9894].Google Scholar
  46. Memmo G. 1894. The alimentation of individuals of different social conditions. Annid. Ist. d’ig sper d. Univ. Di Roma n. Ser. 4.Google Scholar
  47. Medina, B.M., Aparico, M.J.B. 1965Utilizacion de Harina de Bellota en la Vacion de Pollos Para CarneRev. Nutr. Anim. Madrid3258264Google Scholar
  48. Michaux A. 1810. Quercus, or oaks. Trans. by W. Wade. Graisbery and Capbell, Dublin.Google Scholar
  49. Moss, A.R., Deaville, E.R., Givens, D.I. 2001The nutritive value for ruminants of lupin seeds from determinate and dwarf determinate plantsAnim. Feed Sci. Technol.94187198Google Scholar
  50. Müller-Starck, G., Zanetto, A., Kremer, A., Herzog, S. 1996Inheritance of isoenzymes in sessile oak (Quercus petraea (Matt.) Liebl.) and offspring from interspecific crossesForest Genet.3112Google Scholar
  51. Nieto, R., Rivera, M., Garcia, M.A., Aguilera, J.F. 2002Amino acid availability and energy value of acorn in the Iberian pigLivestock Production Sci.77227239Google Scholar
  52. Ofcarcik, R.P., Burns, E.E., Teer, J.G. 1971Acorns for Human FoodFood Ind. J.418Google Scholar
  53. Ojasso, T., Dore, J.C. 1996Taxonomy of nuclear receptors and serpins by multivariate analysis of amino-acid compositionJ. Steroid Biochem. Mol. Biol.58167181Google Scholar
  54. Olsen, O.A. 1974Ultrastructure and genetics of the barley line HiprolyHereditas77287302PubMedGoogle Scholar
  55. Pase, C.P. 1969Survival of Quercus turbinella and Q. emoryi seedlings in an Arizona chaparral communityThe Southwestern Nat.14149156[1824]Google Scholar
  56. Pedo, I., Sgarbieri, V.C., Gutkoski, L.C. 1999Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of BrazilPlant Foods Hum. Nutr.53297304PubMedGoogle Scholar
  57. Racia, N., Heimann, J., Kemmerer, A.R. 1956Amino acid proportions in food proteins compared to proportions utilised in rat growthAgr. Food Chem.4704Google Scholar
  58. Roland, C.K., Stevens, M., Bowden, D.C. 1981Winter variation in nutrient and fiber content and in vitro digestibility of Gambel oak (Quercus gambellii) and Big Sagebrush (Artemisia tridentata) from diversified sites in ColoradoJ. Range Manage.34149151Google Scholar
  59. Saffarzadeh, A., Vincze, L., Csapo, J. 1999Determination of the chemical composition of acorn (Quercus brantii), Pistacia atlantica, Pistacia khinjuk seeds as non-conventional feedstuffsActa Agraria Kaposvariensis35969Google Scholar
  60. Saffarzadeh, A., Vincze, L., Csapo, J. 2000Determination of some anti-nutritional factor and metabolisable energy in acorn (Quercus branti), Pistacia atlantica, Pistacia khinjuk seeds as new poultry dietsActa Agraria Kaposvariensis44147Google Scholar
  61. Shen Han, S. 1982Ch’i Min Yao ShuScience PressBeijing107Google Scholar
  62. Short, H.L. 1976Composition and squirrel use of acorns of black and white oak groupsJ. Wildl. Manage.40479483Google Scholar
  63. Smith, J.R. 1950Tree CropsDevin-AdairCTGoogle Scholar
  64. Soykan B. 1969. 1963 Ylnda Geerli Olan Orman Amenajman Planlarna Gre Orman Varlmz. Orman Aratrma Enstits Yaynlar; Teknik Blten, Seri No: 32, Ankara.Google Scholar
  65. Toumi, L., Lumaret, R. 2001Allozyme characterisation of four Mediterranean evergreen oak speciesBiochem. Syst. Ecol.29799817PubMedGoogle Scholar
  66. Urness P.J. and McCulloch C.Y. 1973. Part III: Nutritional value of seasonal deer diets. In: Special Report 3. Deer nutrition in Arizona chaparral and desert habitats. Phoenix. Arizona Game and Fish Department, AZ, 53–68.Google Scholar
  67. Dersal, W.R. 1940Utilization of oaks by birds and mammalsJ. Wildl. Manage.4404428[11983]Google Scholar
  68. Varela, G., Fonolla, J., Ruano, F. 1965Influencia del Maiz Sobre le Digistibilidad y Valor Nutritivo de la Bellota en CedrosAvances Aliment. Mejora Anim.622212235Google Scholar
  69. Videl, C., Varela, C. 1969Aminograms of prickly pear and acorn-possibilities of improving the nutritive value of their proteinsRev. Nutr. Anim. Madrid75366Google Scholar
  70. Vogel W.G. 1990. Results of planting oaks on coal surface-mined lands. In: Van Sambeek J.W. and Larson M.M. (eds), Proceedings, 4th Workshop on Seedling Physiology and Growth Problems in Oak Plantings; 1989 March 1–2; Columbus,OH(Abstracts). Gen. Tech. Rep. NC-139. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: 19. Abstract. [13146].Google Scholar
  71. Vogt, A.R., Cox, G.S. 1970Evidence for the hormonal control of stump sprouting by oakForest Sci.16165171[9872]Google Scholar
  72. Wanio, W.W., Forbes, E.B. 1941The chemical composition of forest fruits and nuts from PennsylvaniaJ. Agr. Res62627Google Scholar
  73. Watson, L., Creaser, E.H. 1975Non-random variation of protein amino-acid profiles in grass seeds and dicot leavesPhytochemistry1412111217Google Scholar
  74. Weingarten, A. 1958The use of acorns as feedstuffs for chickensU.C. DavisCA43M.S. ThesisGoogle Scholar
  75. Yaltrk F. 1984. Trkiye meeleri tehis klavuzu, Istanbul.Google Scholar
  76. Yeoh, H.H., Wee, Y.C., Watson, L. 1984Systematic variation in leaf amino acid compositions of leguminous plantsPhytochem.2322272229CrossRefGoogle Scholar
  77. Yeoh, H.H., Wee, Y.C., Watson, L. 1986Taxonomic variation in total leaf protein amino acid compositions of monocotyledonous plantsBiochem. Syst. Ecol.149196Google Scholar
  78. Young, V.R., Pellett, P.L. 1990Current concepts concerning indispensable amino acid needs in adults and their implications for international nutrition planningFood Nutr. Bull.12289300Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biology, Division of Botany, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations