Glass Physics and Chemistry

, Volume 31, Issue 5, pp 583–590 | Cite as

Optical, Spectral, and Radiation-Shielding Properties of High-Lead Phosphate Glasses

  • V. I. Arbuzov
  • N. Z. Andreeva
  • N. A. Leko
  • S. I. Nikitina
  • N. F. Orlov
  • Yu. K. Fedorov


The spectral, optical, physicochemical, radiative, and radiation-shielding properties of glasses in the PbO-P2O5-R m O n system (where R m O n stands for Group I–V element oxides) are investigated as a function of their composition. The composition of a colorless radiation-resistant high-lead glass suitable for production on a semicommercial scale is determined. The properties and optical quality parameters of the glass are studied. The new phosphate glass is a lead metaphosphate containing aluminum, alkali, and alkaline-earth oxides. This glass is resistant to radiation at doses up to 107 R and has an optical transmission edge at 360 nm. The coefficient of absorption of gamma radiation for the new glass is larger than those of dense silicate flints. According to the optical parameters, the new glass lies between dense flints and dense barium flints in the Abbe diagram and compensates for the absence of the latter flints in catalogues of radiation-resistant glasses.


Silicate Barium Quality Parameter Gamma Radiation Optical Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otraslevoi standart OST 3-4888-80. Steklo opticheskoe bestsvetnoe. Sinteticheskii sostav (Industrial Standard 3-4888-80. Optical Colorless Glass: Synthetic Composition).Google Scholar
  2. 2.
    Otraslevoi standart OST 3-4391-81. Steklo opticheskoe bestsvetnoe serii 100. Sinteticheskii sostav (Industrial Standard 3-4391-81. Optical Glass of Series 100: Synthetic Composition).Google Scholar
  3. 3.
    Otraslevoi standart OST 3-1768-73. Steklo opticheskoe bestsvetnoe serii 200 i N. Sinteticheskii sostav (Industrial Standard 3-1768-73. Optical Glass of Series 200 and N: Synthetic Composition).Google Scholar
  4. 4.
    Arbuzov, V.I., Fundamental Absorption Spectra and Elementary Electronic Excitations in Oxide Glasses, Fiz. Khim. Stekla, 1996, vol. 22, no.6, pp. 665–682 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 6, pp. 477–489].Google Scholar
  5. 5.
    Raaben, E.L. and Tolstoi, M.N., Effect of the Nature of Glass-Former and Modifier on the Absorption Spectrum of Lead Ions, Fiz. Khim. Stekla, 1988, vol. 14, no.1, pp. 66–71.Google Scholar
  6. 6.
    Raaben, E.L. and Tolstoi, M.N., Concentration Dependences of the Absorption Spectra of Glasses Containing Lead Oxide, Fiz. Khim. Stekla, 1988, vol. 14, no.6, pp. 815–820.Google Scholar
  7. 7.
    Karapetyan, G.O., The Influence of Redox Conditions on the Absorption and Luminescence Spectra of Cerium Ions in Glasses, Opt. Spektrosk., 1957, vol. 3, pp. 641–645.Google Scholar
  8. 8.
    Karapetyan, G.O., The Influence of Composition on the Absorption and Luminescence Spectra of Cerium Ions in Glasses, Opt.-Mekh. Prom-st., 1958, no. 4, pp. 20–24.Google Scholar
  9. 9.
    Wargin, W.W. and Karapetjan, G.O., Absorptionsspektren und Lumineszenz cerhaltigen Glaeser, Glastech. Ber., 1959, vol. 32, no.11, pp. 443–450.Google Scholar
  10. 10.
    Paul, A., Mullholland, M., and Zaman, M.S., Ultraviolet Absorption of Cerium(III) and Cerium(IV) in Some Simple Glasses, J. Mater. Sci., 1976, vol. 11, no.11, pp. 2082–2086.Google Scholar
  11. 11.
    Arbuzov, V.I. and Belyankina, N.B., Spectroscopic and Photochemical Properties of Cerium, Fiz. Khim. Stekla, 1990, vol. 16, no.4, pp. 593–604.Google Scholar
  12. 12.
    Arbuzov, V.I., Electron Phototransfer in Doped Glasses, Doctoral Dissertation, St. Petersburg: “ Vavilov State Opt. Inst.,” State Sci. Center, 1996.Google Scholar
  13. 13.
    Otraslevoi standart OST 3-6403-88. Steklo opticheskoe. Politermicheskii metod opredeleniya kristallizatsii stekla i etapov plavleniya shikhty (Industrial Standard 3-6403-88. Optical Glass: Polythermal Method for Determining Glass Crystallization and Stages of Batch Melting).Google Scholar
  14. 14.
    Storm, E. and Israel, H.I., Photon Cross Sections from 1 keV to 100 MeV for Elements Z = 1 to Z = 100, Nucl. Data Tables A, 1970, vol. 7, pp. 565–681. Translated under the title Secheniya vzaimodeistviya gammaizlucheniya. Spravochnik, Moscow: Atomizdat, 1973.CrossRefGoogle Scholar
  15. 15.
    Arbuzov, V.I., Tolstoi, M.N., and Elerts, M.A., Photorecharging of Rare-Earth Ions in Glass and a Metastable Valence Form of Activator, Fiz. Khim. Stekla, 1987, vol. 13, no.4, pp. 581–587.Google Scholar
  16. 16.
    Arbuzov, V.I., Radiation-Induced Electron Transfer and the Protector Action of Cerium in Radiation-Resistant Glasses, Fiz. Khim. Stekla, 1993, vol. 19, no.3, pp. 410–427 [Glass Phys. Chem. (Engl. transl.), 1993, vol. 19, no. 3, pp. 202–210].Google Scholar
  17. 17.
    Rukovodyashchii tekhnicheskii material RTM 3-48-70. Steklo opticheskoe serii 100. Radiatsionno-opticheskaya ustoichivost' k gamma-izlucheniyu (Technical Guide 3-48-70. Optical Glass of Series 100: Radiation-Optical Resistance to Gamma Radiation).Google Scholar
  18. 18.
    Otraslevoi standart OST 3-51-70. Steklo opticheskoe serii 200 i N. Radiatsionno-opticheskaya ustoichivost' (Industrial Standard 3-51-70. Optical Glass of Series 200 and N: Radiation-Optical Resistance).Google Scholar
  19. 19.
    Strahlenschutzglaser, Strahlenschutzfenster, Mainz: Schott.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • V. I. Arbuzov
    • 1
  • N. Z. Andreeva
    • 1
  • N. A. Leko
    • 1
  • S. I. Nikitina
    • 1
  • N. F. Orlov
    • 1
  • Yu. K. Fedorov
    • 1
  1. 1.Research and Technological Institute of Optical Materials Science“Vavilov State Optical Institute” State Scientific CenterSt. PetersburgRussia

Personalised recommendations