Glass Physics and Chemistry

, Volume 31, Issue 4, pp 510–518 | Cite as

Elaboration of SiC, TiC, and ZrC Nanopowders by Laser Pyrolysis: From Nanoparticles to Ceramic Nanomaterials

  • Y. Leconte
  • H. Maskrot
  • N. Herlin-Boime
  • D. Porterat
  • C. Reynaud
  • A. Swiderska-Sroda
  • E. Grzanka
  • S. Gierlotka
  • B. Palosz
Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites” (St. Petersburg, Russia, July 5–7, 2004)

Abstract

Considerable effort is devoted to the synthesis of refractory carbide ceramics as promising materials for high-temperature applications, such as structural materials for the future generation of nuclear reactors. In this context, nanostructured ceramics are expected to exhibit interesting behavior under irradiation as compared with conventional materials. We report on the synthesis of SiC, TiC, and ZrC nanopowders by laser pyrolysis. The powders were characterized by X-ray diffraction, BET specific surface measurements, scanning electron microscopy, and transmission electron microscopy. SiC nanopowders were obtained from the decomposition of a mixture of silane and acetylene and were composed of grains varying in size from 7.2 to 43.0 nm. Liquid precursors were laser pyrolyzed with ethylene as a sensitizer in order to synthesize Ti-C-O or Zr-C-O powders. Annealing treatments in an argon atmosphere enabled the formation of 45-nm TiC grains or 38-nm ZrC grains through the carburization of the oxide phase by free carbon. Nanocrystalline ceramics were elaborated from SiC or TiC powders by very high pressure (8 GPa) sintering without any sintering additives. The densification reached 94% for SiC and 80% for TiC, without significant grain growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T., Mimura, H., and Kanemitsu, Y., Blue-Green Luminescence from Porous Silicon Carbide, Appl. Phys. Lett., 1994, vol. 64, no.2, pp. 226–228.CrossRefGoogle Scholar
  2. 2.
    Donato, A., Borsella, E., Botti, S., Martelli, S., Nannetti, C.A., Mancini, M.R., and Morjan, I., Thermal Shock Tests of β-SiC Pellets Prepared from Laser Synthesized Nanoscale SiC Powders, J. Nucl. Mater., 1996, vols. 233–237, no.1, pp. 814–817.CrossRefGoogle Scholar
  3. 3.
    Bonjour, C., Nouveaux developpements dans les outils de coupe en carbure fritte, Wear, 1980, vol. 61, no.1, pp. 83–122.CrossRefGoogle Scholar
  4. 4.
    Hintermann, H.E., Adhesion, Friction, and Wear of Thin Hard Coatings, Wear, 1984, vol. 100, nos.1–3, pp. 381–397.CrossRefGoogle Scholar
  5. 5.
    Gross, V., Haylock, J., and Swain, M.V., Transformation Toughened Titanium Carbo-Nitride Zirconia Composites, Mater. Sci. Forum, 1988, vols. 34–36, pp. 555–559.Google Scholar
  6. 6.
    Mei, Z., Yan, Y.W., and Cui, K., Effect of Matrix Composition on the Microstructure of In Situ Synthesized TiC Particulate Reinforced Iron-Based Composites, Mater. Lett., 2003, vol. 57, pp. 3175–3181.CrossRefGoogle Scholar
  7. 7.
    Kim, Y.W., Lee, S.G., and Lee, Y.I., Pressureless Sintering of SiC-TiC Composites with Improved Fracture Toughness, J. Mater. Sci., 2000, vol. 35, pp. 5569–5574.CrossRefGoogle Scholar
  8. 8.
    Das, B.P., Panneerselvam, M., and Rao, K.J., A Novel Microwave Route for the Preparation of ZrC-SiC Composites, J. Solid State Chem., 2003, vol. 173, pp. 196–202.CrossRefGoogle Scholar
  9. 9.
    Chae, K.W., Niihara, K., and Kim, D.Y., Improvements in the Mechanical Properties of TiC by the Dispersion of Fine SiC Particles, J. Mater. Sci. Lett., 1995, vol. 14, pp. 1332–1334.CrossRefGoogle Scholar
  10. 10.
    Endo, H., Ueki, M., and Kubo, H., Microstructure and Mechanical Properties of Hot-Pressed SiC-TiC Composites, J. Mater. Sci., 1991, vol. 26, pp. 3769–3774.CrossRefGoogle Scholar
  11. 11.
    Vaßen, R. and Sover, D., Processing and Properties of Nanophase Non-Oxide Ceramics, Mater. Sci. Eng., A, 2001, vol. 301, pp. 59–68.Google Scholar
  12. 12.
    Vaßen, R., Kaiser, A., and Stover, D., Potential of Nanocrystalline Low-Z Materials for Plasma Facing, Structural Applications in Fusion Reactors, J. Nucl. Mater., 1996, vol. 233–237, no.1, pp. 708–712.Google Scholar
  13. 13.
    Lefort, P., Maitre, A., and Tristant, P., Influence of the Grain Size on the Reactivity of TiO2/C Mixtures, J.Alloys Compd., 2000, vol. 302, pp. 287–298.CrossRefGoogle Scholar
  14. 14.
    Dutremez, S., Gerbier, P., Guerin, C., Henner, B., and Merle, P., Metal Alkoxide/Hexa-2,4-Diyne-1,6-Diol Hybrid Polymers: Synthesis and Use as Precursors to Metal Carbides and Nitrides, Adv. Mater., 1998, vol. 10, no.6, pp. 465–470.CrossRefGoogle Scholar
  15. 15.
    Schwarzkopf, P. and Kieffer, P., Refractory Hard Metals, New York: McMillan, 1953.Google Scholar
  16. 16.
    Dong, J., Shen, W.C., Liu, X., et al., A New Method for Synthesizing the Encapsulated ZrC with Graphitic Layers, Mater. Res. Bull., 2001, vol. 36, pp. 933–938.CrossRefGoogle Scholar
  17. 17.
    Cannon, W.R., Danforth, S.C., Flint, J.H., et al., Sinterable Ceramic Powders from Laser-Driven Reactions, J.Am. Ceram. Soc., 1982, vol. 65, no.7, pp. 324–335.Google Scholar
  18. 18.
    Cauchetier, M., Croix, O., and Luce, M., Laser Synthesis of Silicon Carbide Powders from Silane and Hydrocarbon Mixtures, Adv. Ceram. Mater., 1988, vol. 3, no.6, pp. 548–552.Google Scholar
  19. 19.
    Alexandrescu, R., Borsella, E., Botti, S., et al., Synthesis of TiC and SiC/TiC Nanocrystalline Powders by Gas-Phase Laser-Induced Reaction, J. Mater. Sci., 1997, vol. 32, pp. 5629–5635.CrossRefGoogle Scholar
  20. 20.
    Herlin, N., Armand, X., Musset, E., et al., Nanometric Si-Based Oxide Powders: Synthesis by Laser Spray Pyrolysis and Characterization, J. Eur. Ceram. Soc., 1996, vol. 16, no.10, pp. 1063–1073.CrossRefGoogle Scholar
  21. 21.
    Langlet, M. and Joubert, J.C., Blackwell Scientific Publications, 1992, pp. 55–79.Google Scholar
  22. 22.
    Storms, E.K., The Refractory Carbides, New York: Academic, 1967.Google Scholar
  23. 23.
    Mazzoni, A.D. and Conconi, M.S., Study of Carbonitriding Reactions of Zirconia: Synthesis of Zr(C,N,O) Phases and β-Type Zirconium Oxynitrides, Ceram. Int., 2004, vol. 30, pp. 23–29.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • Y. Leconte
    • 1
  • H. Maskrot
    • 1
  • N. Herlin-Boime
    • 1
  • D. Porterat
    • 1
  • C. Reynaud
    • 1
  • A. Swiderska-Sroda
    • 2
  • E. Grzanka
    • 2
  • S. Gierlotka
    • 2
  • B. Palosz
    • 2
  1. 1.Laboratoire Francis Perrin, Service des Photons, Atomes et MoleculesDSM/DRECAM, CEA-SaclayGif sur Yvette, CedexFrance
  2. 2.UNIPRESS High-Pressure Research CenterPolish Academy of SciencesWarsawPoland

Personalised recommendations