Glass Physics and Chemistry

, Volume 31, Issue 3, pp 390–395 | Cite as

Effect of Co, Ga, and Nd Additions on the Photocatalytic Properties of TiO2 Nanopowders

  • C. M. Whang
  • J. G. Kim
  • E. Y. Kim
  • Y. H. Kim
  • W. I. Lee
Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites” (St. Petersburg, Russia, July 5–7, 2004)


In the present study, metal-ion-doped TiO2 powders were prepared by a sol-gel process using titanium isopropoxide as a Ti precursor and cobalt, gallium, or neodymium as a dopant. For the prepared doped TiO2 nanopowders, the photocatalytic behaviors in the decomposition of aqueous 1,4-dichlorobenzene (DCB) were investigated as a function of doping level and preparation conditions. We found that all of the metal ion doping improved the photocatalytic activity of TiO2, though Nd doping was the most effective and Co doping was least effective. XRD analyses showed that doping with Ga and Nd ions suppresses the anatase-to-rutile phase transition for TiO2, whereas doping with Co did not influence the phase transition. The UV-visible absorption spectra for these metal-ion-doped samples were red-shifted by ∼ 20–40 nm depending upon the doping level.


TiO2 Phase Transition Gallium Photocatalytic Activity Neodymium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoffmann, M.R., Martin, S.T., Choi, W., and Bahmemann, D.W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, vol. 95, no.1, p. 69.Google Scholar
  2. 2.
    Whang, C.M., Kim, Y.K., Kim, J.G., Lee, W.I., and Kim, Y.H., Photocatalytic Activity of SiO2-TiO2 Nanoparticles Prepared by Sol-Hydrothermal Process, Mat. Sci. Forum, 2004, vol. 1117, pp. 449–452.Google Scholar
  3. 3.
    Turchi, C.S. and Ollis, D.F., Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack, J. Catal., 1990, vol. 122, no.1, p. 178.Google Scholar
  4. 4.
    Brezova, V. and Stasko, A.J., Spin Trap Study of Hydroxyl Radicals Formed in the Photocatalytic System TiO2-Water-p-Cresol-Oxygen, J. Catal., 1994, vol. 147, no.1, p. 156.Google Scholar
  5. 5.
    Ohko, Y., Hashimoto, K., and Fujishima, A., Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films, J.Phys. Chem. A, 1997, vol. 101, no.43, p. 8057.Google Scholar
  6. 6.
    Nosaka, Y. and Fox, M.A., Kinetics for Electron Transfer from Laser-Pulse Irradiated Colloidal Semiconductors to Adsorbed Methylviologen: Dependence of the Quantum Yield on Incident Pulse Width, J. Phys. Chem., 1988, vol. 92, no.7, p. 1893.Google Scholar
  7. 7.
    Rothenberger, G., Moser, J., Gratzel, M., Serpone, N., and Sharma, D.K., Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles, J.Am. Chem. Soc., 1985, vol. 107, no.26, p. 8054.Google Scholar
  8. 8.
    Kwon, Y.T., Song, K.Y., Lee, W.I., Choi, G.J., and Do, Y.R., Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction, J. Catal., 2000, vol. 191, no.1, p. 192.Google Scholar
  9. 9.
    Martin, S.T., Morrison, C.L., and Hoffmann, M.R., Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, J. Phys. Chem., 1994, vol. 98, no.51, p. 13695.Google Scholar
  10. 10.
    Kiwi, J. and Morrison, C., Heterogeneous Photocatalysis: Dynamics of Charge Transfer in Lithium-Doped Anatase-Based Catalyst Powders with Enhanced Water Photocleavage under Ultraviolet Irradiation, J. Phys. Chem., 1984, vol. 88, no.25, p. 6146.Google Scholar
  11. 11.
    Wong, W.K. and Malati, M.A., Doped TiO2 for Solar Energy Applications, Solar Energy, 1986, vol. 36, no.2, p. 163.Google Scholar
  12. 12.
    Wilke, K. and Breuer, H.D., J. Photochem. Photobiol., A, 1999, vol. 121, p. 49.Google Scholar
  13. 13.
    Paola, A.D., Marci, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S., and Ohtani, B., Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol, J. Phys. Chem. B, 2002, vol. 106, no.3, p. 637.Google Scholar
  14. 14.
    Dvoranova, D., Brezova, V., Mazur, M., and Malati, M., Investigations of Metal-Doped Titanium Dioxide Photocatalysts, Appl. Catal. B: Environ., 2002, vol. 37, p. 91.Google Scholar
  15. 15.
    Choi, W., Termin, A., and Hoffmann, M.R., Photocatalytic Reactivity of Quantum-Sized TiO2 Particles, Angew. Chem., Int. Ed. Engl., 1994, vol. 33, no.10, p. 1091.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • C. M. Whang
    • 1
  • J. G. Kim
    • 1
  • E. Y. Kim
    • 1
  • Y. H. Kim
    • 2
  • W. I. Lee
    • 2
  1. 1.School of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea
  2. 2.Department of ChemistryInha UniversityIncheonRepublic of Korea

Personalised recommendations