Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides


Mass spectrometry has high sensitivity and is widely used in the identification of molecular structures, however, the structural determination of oligosaccharides through mass spectrometry is still challenging. A novel method, namely the logically derived sequence (LODES) tandem mass spectrometry (MSn), for the structural determination of underivatized oligosaccharides was developed. This method, which is based on the dissociation mechanisms, involves sequential low-energy collision-induced dissociation (CID) of sodium ion adducts, a logical sequence for identifying the structurally decisive product ions for subsequent CID, and a specially prepared disaccharide CID spectrum database. In this work, we reported the assignment of the specially prepared galactose disaccharide CID spectra. We used galactose trisaccharides and tetrasaccharides as examples to demonstrate LODES/MSn is a general method that can be used for the structural determination of hexose oligosaccharides. LODES/MSn has the potential to be extended to oligosaccharides containing other monosaccharides provided the dissociation mechanisms are understood and the corresponding disaccharide database is available.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Nelson, D.L., Lehninger, A.L., Cox, M.M.: Lehninger principles of biochemistry., W.H. Freeman, New York (2008)

  2. 2.

    Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science. 291, 2357–2364 (2001)

  3. 3.

    Laine, R.A.: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05x10(12) structures for a reducing hexasaccharide - the isomer-barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 4, 759–767 (1994)

  4. 4.

    Council, N.R.: Transforming Glycoscience: a Roadmap for the Future, The National Academies Press, Washington, DC (2012)

  5. 5.

    Duus, J., Gotfredsen, C.H., Bock, K.: Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem. Rev. 100, 4589–4614 (2000)

  6. 6.

    Zaia, J.: Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23, 161–227 (2004)

  7. 7.

    Dell, A., Morris, H.R.: Glycoprotein structure determination by mass spectrometry. Science. 291, 2351–2356 (2001)

  8. 8.

    Ballistreri, A., Montaudo, G., Garozzo, D., Giuffrida, M., Impallomeni, G.: Determination of linkage position in disaccharides by negative-ion fast-atom bombardment mass spectrometry. Rapid Commun. Mass Spectrom. 3, 302–304 (1989)

  9. 9.

    Garozzo, D., Giuffrida, M., Impallomeni, G., Ballistreri, A., Montaudo, G.: Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative-ion fast atom bombardment mass-spectrometry. Anal. Chem. 62, 279–286 (1990)

  10. 10.

    Hofmeister, G.E., Zhou, Z., Leary, J.A.: Linkage position determination in lithium-cationized disaccharides - tandem mass-spectrometry and semiempirical calculations. J. Am. Chem. Soc. 113, 5964–5970 (1991)

  11. 11.

    Garozzo, D., Impallomeni, G., Spina, E., Green, B.N., Hutton, T.: Linkage analysis in disaccharides by electrospray mass-spectrometry. Carbohydr. Res. 221, 253–257 (1991)

  12. 12.

    Garozzo, D., Impallomeni, G., Montaudo, G., Spina, E.: Structure of underivatized branched oligosaccharides by negative-ion fast-atom-bombardment mass-spectrometry. Rapid Commun. Mass Spectrom. 6, 550–552 (1992)

  13. 13.

    Dwek, R.A., Edge, C.J., Harvey, D.J., Wormald, M.R., Parekh, R.B.: Analysis of glycoprotein-associated oligosaccharides. Annu. Rev. Biochem. 62, 65–100 (1993)

  14. 14.

    Stephens, E., Maslen, S.L., Green, L.G., Williams, D.H.: Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 76, 2343–2354 (2004)

  15. 15.

    Kurimoto, A., Daikoku, S., Mutsuga, S., Kanie, O.: Analysis of energy-resolved mass spectra at MSn in a pursuit to characterize structural isomers of oligosaccharides. Anal. Chem. 78, 3461–3466 (2006)

  16. 16.

    Vijayakrishnan, B., Issaree, A., Corilo, Y.E., Ferreira, C.R., Eberlin, M.N., Peter, M.G.: MSn of the six isomers of (GlcN)2(GlcNAc)2 aminoglucan tetrasaccharides (diacetylchitotetraoses): rules of fragmentation for the sodiated molecules and application to sequence analysis of hetero-chitooligosaccharides. Carbohydr. Polym. 84, 713–726 (2011)

  17. 17.

    Nagy, G., Pohl, N.L.B.: Complete hexose isomer identification with mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 677–685 (2015)

  18. 18.

    Li, D.T., Her, G.R.: Structural analysis of chromophore-labeled disaccharides and oligosaccharides by electrospray ionization mass spectrometry and high-performance liquid chromatography electrospray ionization mass spectrometry. J. Mass Spectrom. 33, 644–652 (1998)

  19. 19.

    Cheng, H.L., Her, G.R.: Determination of linkages of linear and branched oligosaccharides using closed-ring chromophore labeling and negative ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 1322–1330 (2002)

  20. 20.

    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 1. use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 16, 622–630 (2005)

  21. 21.

    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 631–646 (2005)

  22. 22.

    Guan, B., Cole, R.B.: MALDI linear-field reflectron TOF post-source decay analysis of underivatized oligosaccharides: determination of glycosidic linkages and anomeric configurations using anion attachment. J. Am. Soc. Mass Spectrom. 19, 1119–1131 (2008)

  23. 23.

    Harvey, D.J., Jaeken, J., Butler, M., Armitage, A.J., Rudd, P.M., Dwek, R.A.: Fragmentation of negative ions from N-linked carbohydrates, part 4. fragmentation of complex glycans lacking substitution on the 6-antenna. J. Mass Spectrom. 45, 528–535 (2010)

  24. 24.

    Konda, C., Bendiak, B., Xia, Y.: Linkage determination of linear oligosaccharides by MSn (n > 2) collision-induced dissociation of Z1 ions in the negative ion mode. J. Am. Soc. Mass Spectrom. 25, 248–257 (2014)

  25. 25.

    Viseux, N., de Hoffmann, E., Domon, B.: Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Anal. Chem. 70, 4951–4959 (1998)

  26. 26.

    van der Kerk, S.M., Blok-Tip, L., van der Kerk-van Hoof, A., Heerma, W., Haverkamp, J.: Differences in fragmentation behavior between α-linked and β-linked derivatized xylobiosides: explanation in terms of sigma conjugation. Int. J. Mass Spectrom. Ion Process. 134, 41–54 (1994)

  27. 27.

    Xue, J., Song, L., Khaja, S.D., Locke, R.D., West, C.M., Laine, R.A., Matta, K.L.: Determination of linkage position and anomeric configuration in hex-Fuc disaccharides using electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1947–1955 (2004)

  28. 28.

    Mendonca, S., Cole, R.B., Zhu, J.H., Cai, Y., French, A.D., Johnson, G.P., Laine, R.A.: Incremented alkyl derivatives enhance collision induced glycosidic bond cleavage in mass spectrometry of disaccharides. J. Am. Soc. Mass Spectrom. 14, 63–78 (2003)

  29. 29.

    Ashline, D., Singh, S., Hanneman, A., Reinhold, V.: Congruent strategies for carbohydrate sequencing. 1. mining structural details by MSn. Anal. Chem. 77, 6250–6262 (2005)

  30. 30.

    Zhang, H.L., Singh, S., Reinhold, V.N.: Congruent strategies for carbohydrate sequencing. 2. FragLib: an MSn spectral library. Anal. Chem. 77, 6263–6270 (2005)

  31. 31.

    Fang, T.T., Zirrolli, J., Bendiak, B.: Differentiation of the anomeric configuration and ring form of glucosyl-glycolaldehyde anions in the gas phase by mass spectrometry: isomeric discrimination between m/z 221 anions derived from disaccharides and chemical synthesis of m/z 221 standards. Carbohydr. Res. 342, 217–235 (2007)

  32. 32.

    Fang, T.T., Bendiak, B.: The stereochemical dependence of unimolecular dissociation of monosaccharide-glycolaldehyde anions in the gas phase: a basis for assignment of the stereochemistry and anomeric configuration of monosaccharides in oligosaccharides by mass spectrometry via a key discriminatory product ion of disaccharide fragmentation, m/z 221. J. Am. Chem. Soc. 129, 9721–9736 (2007)

  33. 33.

    Konda, C., Londry, F.A., Bendiak, B., Xia, Y.: Assignment of the stereochemistry and anomeric configuration of sugars within oligosaccharides via overlapping disaccharide ladders using MSn. J. Am. Soc. Mass Spectrom. 25, 1441–1450 (2014)

  34. 34.

    Naven, T.J., Harvey, D.J.: Effect of structure on the signal strength of oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Rapid Commun. Mass Spectrom. 10, 1361–1366 (1996)

  35. 35.

    Kailemia, M.J., Ruhaak, L.R., Lebrilla, C.B., Amster, I.J.: Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86, 196–212 (2014)

  36. 36.

    Chen, J.L., Lee, C., Lu, I.C., Chien, C.L., Lee, Y.T., Hu, W.P., Ni, C.K.: Theoretical investigation of low detection sensitivity for underivatized carbohydrates in ESI and MALDI. J. Mass Spectrom. 51, 1180–1186 (2016)

  37. 37.

    Hsu, H.C., Liew, C.Y., Huang, S.P., Tsai, S.T., Ni, C.K.: Simple approach for De novo structural identification of mannose Trisaccharides. J. Am. Soc. Mass Spectrom. 29, 470–480 (2018)

  38. 38.

    Hsu, H.C., Liew, C.Y., Huang, S.P., Tsai, S.T., Ni, C.K.: Simple method for De novo structural determination of Underivatised glucose oligosaccharides. Sci. Rep. 8, 5562 (2018)

  39. 39.

    Hsu, H.C., Huang, S.P., Liew, C.Y., Tsai, S.T., Ni, C.K.: De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry. Anal. Bioanal. Chem. 411, 3241–3255 (2019)

  40. 40.

    Tsai, S.T., Liew, C.Y., Hsu, H.C., Huang, S.P., Weng, W.C., Kuo, Y.H., Ni, C.K.: Automatically full glycan structural determination with logically derived sequence tandem mass spectrometry. ChemBioChem. 20, 2351–2359 (2019)

  41. 41.

    Chen, J.L., Nguan, H.S., Hsu, P.J., Tsai, S.T., Liew, C.Y., Kuo, J.L., Hu, W.P., Ni, C.K.: Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Phys. Chem. Chem. Phys. 19, 15454–15462 (2017)

  42. 42.

    Huynh, H.T., Phan, H.T., Hsu, P.J., Chen, J.L., Nguan, H.S., Tsai, S.T., Roongcharoen, T., Liew, C.Y., Ni, C.K., Kuo, J.L.: Collision-induced dissociation of sodiated glucose, galactose, and mannose, and the identification of anomeric configurations. Phys. Chem. Chem. Phys. 20, 19614–19624 (2018)

  43. 43.

    Chiu, C.C., Tsai, S.T., Hsu, P.J., Huynh, H.T., Chen, J.L., Phan, H.T., Huang, S.P., Lin, H.Y., Kuo, J.L., Ni, C.K.: Unexpected dissociation mechanism of Sodiated N-Acetylglucosamine and N-Acetylgalactosamine. J. Phys. Chem. A. 123, 3441–3453 (2019)

  44. 44.

    Chiu, C.C., Huynh, H.T., Tsai, S.T., Lin, H.Y., Hsu, P.J., Phan, H.T., Karumanthra, A., Thompson, H., Lee, Y.C., Kuo, J.L., Ni, C.K.: Toward closing the gap between hexoses and N-Acetlyhexosamines: experimental and computational studies on the collision-induced dissociation of Hexosamines. J. Phys. Chem. A. 123, 6683–6700 (2019)

  45. 45.

    Tsai, S.T., Chen, J.L., Ni, C.K.: Does low-energy collision-induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end? Rapid Commun. Mass Spectrom. 31, 1835–1844 (2017)

  46. 46.

    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

  47. 47.

    Asam, M.R., Glish, G.L.: Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 8, 987–995 (1997)

  48. 48.

    da Costa, E.V., Moreira, A.S.P., Nunes, F.M., Coimbra, M.A., Evtuguin, D.V., Domingues, M.R.M.: Differentiation of isomeric pentose disaccharides by electrospray ionization tandem mass spectrometry and discriminant analysis. Rapid Commun. Mass Spectrom. 26, 2897–2904 (2012)

  49. 49.

    Zhang, H., Brokman, S.M., Fang, N., Pohl, N.L., Yeung, E.S.: Linkage position and residue identification of disaccharides by tandem mass spectrometry and linear discriminant analysis. Rapid Commun. Mass Spectrom. 22, 1579–1586 (2008)

Download references


This work was financially supported in part by the Thematic Research Project, (AS-107-TP-A08), Academia Sinica, Taiwan.

Author information

Correspondence to Chi-Kung Ni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 121 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Hsu, H.C., Liew, C.Y. et al. Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconj J (2020).

Download citation


  • Logically derived sequence
  • Multistage tandem mass spectrometry
  • Oligosaccharide
  • Collision induced dissociation
  • Anomeric configuration