Glycoconjugate Journal

, Volume 36, Issue 5, pp 419–428 | Cite as

Gangliosides profiling in serum of breast cancer patient: GM3 as a potential diagnostic biomarker

  • Qinying Li
  • Mei Sun
  • Mingsheng Yu
  • Qianyun Fu
  • Hao Jiang
  • Guangli Yu
  • Guoyun LiEmail author
Original Article


Gangliosides altered during the pathological conditions and particularly in cancers. Here, we aimed to profile the gangliosides in breast cancer serum and propose potential biomarkers. LC-FTMS method was first used to identify all the ganglioside species in serum, then LC-MS/MS-MRM method was employed to quantitate the levels of gangliosides in serum from healthy volunteers and patients with benign breast tumor or breast cancer. 49 ganglioside species were determined, including GM1, GM2, GM3, GD1, GD3 and GT1 species. Compared to healthy volunteers, the levels of GM1, GM2, GM3, GD1 and GD3 displayed a rising trend in breast cancer patients. In particular, as the major glycosphingolipid component, GM3 showed excellent diagnostic accuracy in cancer serum (AUC > 0.9). PCA profile of the GM3 species showed clear distinction between normal and cancer serum. What’s more, ROC curve proved great diagnostic accuracy of GM3 between cancer and benign serum. In addition, GM3 was discovered as a diagnostic marker to differentiate luminal B subtype from other subtypes. Furthermore, a positive correlation between GM3 and Ki-67 status of patients was identified. In conclusion, our results introduced the alteration patterns of serum gangliosides in breast cancer and suggested serum GM3 as a potential diagnostic biomarker in breast cancer diagnosis and luminal B subtype distinction.


Breast cancer Biomarker Gangliosides GM3 Serum 



Luminal A subtype


Luminal B subtype


HER-2 overexpressing subtype


Basal-like subtype


Healthy volunteers


Benign breast tumor patients


Breast cancer patients


Receiver operator characteristics


Principal component analysis


Multiple reaction monitoring


Liquid chromatography-Fourier transform mass spectrometry.



This work was supported by Grants from National Natural Science Foundation of China (31600646), Natural Science Foundation of Shandong Province (ZR2016HB42), the Fundamental Research Funds for the Central Universities (201762002), Qingdao Basic and Applied Research Project (18-2-2-25-jch), National Science and Technology Major Project for Significant New Drugs Development (2018ZX09735004), NSFC-Shandong Joint Fund for Marine Science Research Centers (U1606403) and Taishan scholar project special funds (TS201511011).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2019_9885_MOESM1_ESM.pdf (480 kb)
ESM 1 (PDF 479 kb)


  1. 1.
    DeSantis, C.E., Ma, J., Goding, S.A., Newman, L.A., Jemal, A.: Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin. 67, 439–448 (2017)CrossRefGoogle Scholar
  2. 2.
    Siegel, R.L., Miller, K.D., Ahmedin Jemal, D.: Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018)CrossRefGoogle Scholar
  3. 3.
    Carlson, R.W.: NCCN breast cancer clinical practice guidelines in oncology: an update. J. Natl. Compr. Cancer New. 7, 122–192 (2008)CrossRefGoogle Scholar
  4. 4.
    Birdwell, R.L., Mountford, C.E., Iglehart, J.D.: Molecular imaging of the breast. AJR Am. J. Roentgenol. 48, 1075–1088 (2010)Google Scholar
  5. 5.
    Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J., Tong, F., Speed, T., Spellman, P.T., DeVries, S., Lapuk, A., Wang, N.J., Kuo, W., Stilwell, J.L., Pinkel, D., Albertson, D.G., Waldman, F.M., McCormick, F., Dickson, R.B., Johnson, M.D., Lippman, M., Ethier, S., Gazdar, A., Gray, J.W.: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 10, 515–527 (2006)CrossRefGoogle Scholar
  6. 6.
    Mao, J.H., Diest, P.J.V., Perezlosada, J., Snijders, A.M.: Revisiting the impact of age and molecular subtype on overall survival after radiotherapy in breast cancer patients. Sci. Rep. 7, 12587–12594 (2017)CrossRefGoogle Scholar
  7. 7.
    Guiu, S., Michiels, S., André, F., Cortes, J., Denkert, C., Leo, A.D., Hennessy, B.T., Sorlie, T., Sotiriou, C., Turner, N.: Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 working group statement. Ann. Oncol. 23, 2997–3006 (2012)CrossRefGoogle Scholar
  8. 8.
    Parise, C., Caggiano, V.: Disparities in the risk of the ER/PR/HER2 breast cancer subtypes among Asian Americans in California. Cancer Epidemiol. 38, 556–562 (2014)CrossRefGoogle Scholar
  9. 9.
    Johansson, A.L.V., Trewin, C.B., Hjerkind, K.V., Ellingjord-Dale, M., Johannesen, T.B., Ursin, G.: Breast cancer-specific survival by clinical subtype after 7 years follow-up of young and elderly women in a nationwide cohort. Int. J. Cancer. 144, 1251–1261 (2018)CrossRefGoogle Scholar
  10. 10.
    Arvold, N.D., Taghian, A.G., Niemierko, A., Abi, R.R., Sreedhara, M., Nguyen, P.L., Bellon, J.R., Wong, J.S., Smith, B.L., Harris, J.R.: Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J. Clin. Oncol. 29, 3885–3891 (2011)CrossRefGoogle Scholar
  11. 11.
    Engstrøm, M.J., Opdahl, S., Hagen, A.I., Romundstad, P.R., Akslen, L.A., Haugen, O.A., Vatten, L.J., Bofin, A.M.: Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res. Treat. 140, 463–473 (2013)CrossRefGoogle Scholar
  12. 12.
    Liedtke, C., Rody, A., Gluz, O., Baumann, K., Beyer, D., Kohls, E., Lausen, K., Hanker, L., Holtrich, U., Becker, S., Karn, T.: The prognostic impact of age in different molecular subtypes of breast cancer. Breast Cancer Res. Treat. 152, 667–673 (2015)CrossRefGoogle Scholar
  13. 13.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3, 97–130 (1993)CrossRefGoogle Scholar
  14. 14.
    Zhang, S., Cao, X., Gao, Q., Liu, Y.: Protein glycosylation in viral hepatitis-related HCC: characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett. 406, 64–70 (2017)CrossRefGoogle Scholar
  15. 15.
    Ferreira, J.A., Magalhães, A., Gomes, J., Peixoto, A., Gaiteiro, C., Fernandes, E., Santos, L.L., Reis, C.A.: Protein glycosylation in gastric and colorectal cancers: toward cancer detection and targeted therapeutics. Cancer Lett. 387, 32–45 (2017)CrossRefGoogle Scholar
  16. 16.
    Kailemia, M.J., Park, D., Lebrilla, C.B.: Glycans and glycoproteins as specific biomarkers for cancer. Anal. Bioanal. Chem. 409, 395–410 (2017)CrossRefGoogle Scholar
  17. 17.
    Vankemmelbeke, M., Chua, J.X., Durrant, L.G.: Cancer cell associated glycans as targets for immunotherapy. OncoImmunology. 5, e1061177 (2016)CrossRefGoogle Scholar
  18. 18.
    Reis, C.A., Osorio, H., Silva, L., Gomes, C., David, L.: Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322–329 (2010)CrossRefGoogle Scholar
  19. 19.
    Locker, G.Y., Hamilton, S., Harris, J., Jessup, J.M., Kemeny, N., Macdonald, J.S., Somerfield, M.R., Hayes Jr., D.F., Bast, R.C.: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006)CrossRefGoogle Scholar
  20. 20.
    Safi, F., Schlosser, W., Kolb, G., Beger, H.G.: Diagnostic value of CA 19-9 in patients with pancreatic cancer and nonspecific gastrointestinal symptoms. J. Gastrointest. Surg. 1, 106–112 (1997)CrossRefGoogle Scholar
  21. 21.
    Zurawski, V.R., Orjaseter, H., Andersen, A., Jellum, E.: Elevated serum CA 125 levels prior to diagnosis of ovarian neoplasia: relevance for early detection of ovarian cancer. Int. J. Cancer. 42, 677–680 (2010)CrossRefGoogle Scholar
  22. 22.
    Ebeling, F.G., Stieber, P., Untch, M., Nagel, D., Konecny, G.E., Schmitt, U.M., Fateh-Moghadam, A., Seidel, D.: Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. Brit. J. Cancer. 86, 1217–1222 (2002)CrossRefGoogle Scholar
  23. 23.
    Kumpulainen, E.J., Keskikuru, R.J., Johansson, R.T.: Serum tumor marker CA 15.3 and stage are the two Most powerful predictors of survival in primary breast Cancer. Breast Cancer Res. Treat. 76, 95–102 (2002)CrossRefGoogle Scholar
  24. 24.
    Hakomori, S.: The glycosynapse. Proc. Natl. Acad. Sci. U. S. A. 99, 225–232 (2002)CrossRefGoogle Scholar
  25. 25.
    Hakomori, S.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318 (1996)Google Scholar
  26. 26.
    Groux-Degroote, S., Guérardel, Y., Delannoy, P.: Gangliosides: structures, biosynthesis, analysis, and roles in Cancer. Chembiochem. 18, 1146–1154 (2017)CrossRefGoogle Scholar
  27. 27.
    Birklé, S., Zeng, G., Gao, L., Yu, R.K., Aubry, J.: Role of tumor-associated gangliosides in cancer progression. Biochimie. 85, 455–463 (2003)CrossRefGoogle Scholar
  28. 28.
    Nilsson, O., Brezicka, F.T., Holmgren, J., Sorenson, S., Svennerholm, L., Yngvason, F., Lindholm, L.: Detection of a ganglioside antigen associated with small cell lung carcinomas using monoclonal antibodies directed against fucosyl-GM1. Cancer Res. 46, 1403–1407 (1986)Google Scholar
  29. 29.
    Tsuchida, T., Saxton, R.E., Irie, R.F.: Gangliosides of human melanoma: GM2 and tumorigenicity. J. Natl. Cancer Inst. 78, 55–60 (1987)CrossRefGoogle Scholar
  30. 30.
    Hamilton, W.B., Helling, F., Lloyd, K.O., Livingston, P.O.: Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int. J. Cancer. 53, 566–573 (1993)CrossRefGoogle Scholar
  31. 31.
    Nohara, K., Wang, F., Spiegel, S.: Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines. Breast Cancer Res. Treat. 48, 149–157 (1998)CrossRefGoogle Scholar
  32. 32.
    Gu, Y., Zhang, J., Mi, W., Yang, J., Han, F., Lu, X., Yu, W.: Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast Cancer Res. 10, R1 (2008)CrossRefGoogle Scholar
  33. 33.
    Marquina, G., Waki, H., Fernandez, L.E., Kon, K., Carr, A., Valiente, O., Perez, R., Ando, S.: Gangliosides expressed in human breast cancer. Cancer Res. 56, 5165–5171 (1996)Google Scholar
  34. 34.
    Kondrat, R.W., McClusky, G.A., Cooks, R.G.: Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal. Chem. 50, 2017–2021 (1978)CrossRefGoogle Scholar
  35. 35.
    Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)CrossRefGoogle Scholar
  36. 36.
    Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987)CrossRefGoogle Scholar
  37. 37.
    Aharoni, A., Ric De Vos, C.H., Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., Goodenowe, D.B.: Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS. 6, 217–234 (2002)CrossRefGoogle Scholar
  38. 38.
    Roberts, L.D., Souza, A.L., Gerszten, R.E., Clish, C.B.: Targeted metabolomics. Curr. Protoc. Mol. Biol. 98, 30–32 (2012)CrossRefGoogle Scholar
  39. 39.
    Wiesner, D.A., Sweeley, C.C.: Circulating gangliosides of breast-cancer patients. Int. J. Cancer. 60, 294–299 (1995)CrossRefGoogle Scholar
  40. 40.
    Mitsuzuka, K., Handa, K., Satoh, M., Arai, Y., Hakomori, S.: A specific microdomain ("glycosynapse 3") controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J. Biol. Chem. 280, 35545–35553 (2005)CrossRefGoogle Scholar
  41. 41.
    Miura, Y., Kainuma, M., Jiang, H., Velasco, H., Vogt, P.K., Hakomori, S.: Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc. Natl. Acad. Sci. U. S. A. 101, 16204–16209 (2004)CrossRefGoogle Scholar
  42. 42.
    Chan, R.B., Perotte, A.J., Zhou, B., Liong, C., Shorr, E.J., Marder, K.S., Kang, U.J., Waters, C.H., Levy, O.A., Xu, Y., Shim, H.B., Pe Er, I., Di Paolo, G., Alcalay, R.N.: Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: a lipidomic analysis. PLoS One. 12, e172348 (2017)Google Scholar
  43. 43.
    Zaprianova, E., Deleva, D., Sultanov, B., Kolyovska, V.: Serum Ganglioside GM3 Changes in Patients with Early Multilpe Sclerosis. Acta Morphol. et Anthropol. 15, 16–18 (2010)Google Scholar
  44. 44.
    Pu, W., Guan, P., Su, X., Wang, Z., Yamagata, S., Yamagata, T.: Emerging GM3 regulated biomarkers in malignant melanoma. In Recent Advances in the Biology, Therapy and Management of Melanoma (2013)Google Scholar
  45. 45.
    Noguchi, M., Suzuki, T., Kabayama, K., Takahashi, H., Chiba, H., Shiratori, M., Abe, S., Watanabe, A., Satoh, M., Hasegawa, T., Tagami, S., Ishii, A., Saitoh, M., Kaneko, M., Iseki, K., Igarashi, Y., Inokuchi, J.: GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Sci. 98, 1625–1632 (2007)CrossRefGoogle Scholar
  46. 46.
    Yang, L., Cui, X., Zhang, N., Li, M., Bai, Y., Han, X., Shi, Y., Liu, H.: Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal. Bioanal. Chem. 407, 5065–5077 (2015)CrossRefGoogle Scholar
  47. 47.
    Tran, B., Bedard, P.L.: Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 13, 221–220 (2011)CrossRefGoogle Scholar
  48. 48.
    Inwald, E.C., Klinkhammer-Schalke, M., Hofstädter, F., Zeman, F., Koller, M., Gerstenhauer, M., Ortmann, O.: Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res. Treat. 139, 539–552 (2013)CrossRefGoogle Scholar
  49. 49.
    Urruticoechea, A., Smith, I.E., Dowsett, M.: Proliferation marker Ki-67 in early breast Cancer. J. Clin. Oncol. 23, 7212–7220 (2005)CrossRefGoogle Scholar
  50. 50.
    Potapenko, I.O., Lüders, T., Russnes, H.G., Helland, Å., Sørlie, T., Kristensen, V.N., Nord, S., Lingjaerde, O.C., Børresen-Dale, A., Haakensen, V.D.: Glycan-related gene expression signatures in breast cancer subtypes; relation to survival. Mol. Oncol. 9, 861–876 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qinying Li
    • 1
  • Mei Sun
    • 2
  • Mingsheng Yu
    • 2
  • Qianyun Fu
    • 1
  • Hao Jiang
    • 1
    • 3
  • Guangli Yu
    • 1
    • 3
  • Guoyun Li
    • 1
    • 3
    Email author
  1. 1.Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and GlycotechnologyOcean University of ChinaQingdaoChina
  2. 2.Qingdao Municipal Hospital, The Affiliated Qingdao Municipal HospitalQingdao University Medical CollegeQingdaoChina
  3. 3.Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations