Glycoconjugate Journal

, Volume 36, Issue 2, pp 175–183 | Cite as

Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses

  • Albert M. WuEmail author
  • Jia Hau Liu


Lectins, in combination with our established enzyme-linked lectin sorbent assay (ELLSA) and inhibition study, have been used as powerful tools in many glycoconjugate recognition studies. In this short review, we highlight the following: (i) The recognition profiles of Gal/GalNAc-specific lectins were updated and upgraded. (ii) Based on the cross-specificities of applied lectins, a new classification system was introduced. (iii) Applications of lectins for the detection and identification of N-glycan and/or Tn glycotope in glycoconjugates were intergraded. (iv) The polyvalency of the glycotopes in glycans was found to play a critical role in glycan–lectin recognition. This is an unexplored area of glycobiology and one of the most promising directions toward the coming glycoscience transformation.


Applied lectins  Glycotopes (epitopes) Glycan recognition Lectin–glycan interactions Polyvalency of glycotopes 



Quantitative precipitin assay


Quantitative inhibition assay




Hemagglutination inhibition assay


Enzyme-linked lectinosorbent assay


Enzyme-linked inhibition assay

Mass RP

Mass relative potency


Molecular mass cutoff


Glycan-binding protein


Carbohydrate-binding protein



The authors would like to thank Drs. W.J. Peumans and E.J. Van Damme for our long-term collaboration in obtaining many of the promising data for this review.

This work was supported by a CGU research grant, BMRP 008 and MICCs Forever Fund.

Kwei-San, Tao-yuan, Taiwan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Wu, A.M.: Lectin in encyclopedia of biophysics 2nd. Springer, New York/London (2019)Google Scholar
  2. 2.
    Sharon, N. and Lis, H. In: Lectins. Kluwer Academic Publishers, Dordrecht, Boston, London. (2003)Google Scholar
  3. 3.
    Sharon, N., Lis, H.: Lectins as cell recognition molecules. Science. 246, 227–234 (1989)CrossRefGoogle Scholar
  4. 4.
    Gabius, H.J., André, S., Jiménez-Barbero, J., Romero, A., Solís, D.: From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem. Sci. 36, 298–313 (2011)CrossRefGoogle Scholar
  5. 5.
    Gabius, H.J. (ed.): The sugar code: fundamentals of Glycosciences, pp. 1–597. John Wiley & Sons Inc, Hoboken, New Jersey (2009)Google Scholar
  6. 6.
    Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Essentials of Glycobiology, 3rd edn, pp. 380–381. Cold Spring Harbor, New York (2017)Google Scholar
  7. 7.
    Figdor, C.G., van Kooyk, Y., Adema, G.J.: C-type lectin receptors on dendritic cells and langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002)CrossRefGoogle Scholar
  8. 8.
    Kamerling, J.P., Boons, G.J., Lee, Y., Suzuki, A., Taniguchi, N., Voragen, A.G.J., editors, Comprehensive Glycoscience, Elsevier B.V. Pp. 1-3600, In 4 Volumes, (2007)Google Scholar
  9. 9.
    Wu, A.M., Lisowska, E., Duk, M., Yang, Z.: Lectins as tools in glycoconjugate research. Glycoconj. 26, 899–913 (2009)CrossRefGoogle Scholar
  10. 10.
    Wu, A.M., Liu, J.H., Singh, T., Yang Z.: Recognition roles of mammalian structural units and polyvalency in lectin-glycan interactions. In: Chapter 6, the Molecular Immunology of Complex Carbohydrates-3. Adv. Exp. Med. Biol., 705:99–116, (2011)Google Scholar
  11. 11.
    Wu, A.M., Wu, J.H., Singh, T., Chu, K.C., Peumans, W.J., Rouge, P., Van Damme, E.J.: A novel lectin (Morniga M) from mulberry (Morus nigra) bark recognizes oligomannosyl residues in N-glycans. J. Biomed. Sci. 11(6), 874–885 (2004)CrossRefGoogle Scholar
  12. 12.
    Wu, A.M.: Polyvalency of Tn (GalNAcalpha1→Ser/Thr) glycotope as a critical factor for Vicia villosa B4 and glycoprotein interactions. FEBS Lett. 562, 51–58 (2004)CrossRefGoogle Scholar
  13. 13.
    Wu, A.M., Liu, J.H., Gong, Y.P., Li, C.C., Chang, E.T.: Multiple recognition systems adopting four different glycotopes at the same domain for the Agaricus bisporus agglutinin-glycan interactions. FEBS Lett. 584, 3561–3566 (2010)CrossRefGoogle Scholar
  14. 14.
    Singh, T., Wu, J.H., Peumans, W.J., Rouge, P., Van Damme, E.J.: Wu, a.M.: recognition profile of Morus nigra agglutinin expressed by monomeric ligands, simple clusters and mammalian polyvalent glycotopes. (Morniga G). Mol. Immunol. 44(4), 451–462 (2007)CrossRefGoogle Scholar
  15. 15.
    Singh, T., Wu, J.H., Peumans, W.J., Rouge, P., Van Damme, E.J., Alvarez, R.A., Blixt, O., Wu, A.M.: Carbohydrate specificity of an insecticidal lectin isolated from the leaves of Glechoma hederacea (ground ivy) towards mammalian glycoconjugates. Biochem. J. 393(Pt 1), 331–341 (2006)CrossRefGoogle Scholar
  16. 16.
    Wu, A.M.: Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAcalpha1→Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea. J. Biomed. Sci. 12(1), 167–184 (2005)CrossRefGoogle Scholar
  17. 17.
    Wu, A.M., Sugii, S.J.: Differential binding properties of DGa1 and/or DGa1NAc specific lectins. In: The Molecular Immunology of Complex Carbohydrates, (Wu, a.M. Ed.) Adv. Exp. Med. Biol. 228: 205–263, 1988. Plenum Press, New York and London, (1988)Google Scholar
  18. 18.
    Wu, A.M., Sugii, S.J. and Herp, A.: A Guide for Carbohydrate Specificities of Lectins Appendix. in the Molecular Immunology of Complex Carbohydrates, (Wu, AM Ed.) Adv. Exp. Med. Biol. 228: 817–853. Plenum Press, New York and London, (1988)Google Scholar
  19. 19.
    Wu, A.M., Song, S.C., Tsai, M.S., Herp, A.: A guide to the carbohydrate specificities of applied lectins-2 (updated in 2000). Adv. Exp. Med. Biol. 491, 551–585 (2001)CrossRefGoogle Scholar
  20. 20.
    Wu, A.M., Singh, T., Chen, Y.L., Anderson, K.M., Li, S.C., Li, Y.T.: Glycan binding profile of a fucolectin-related protein (FRP) encoded by the SP2159 gene of Streptococcus pneumoniae. Biochimie Open. 6, 17–23 (2018)CrossRefGoogle Scholar
  21. 21.
    Rillahan, C.D., Paulson, J.C.: Glycan Microrrays for decoding the Glycome. Annu. Rev. Biochem. 80, 797–823 (2011)CrossRefGoogle Scholar
  22. 22.
    Wu, C.Y., Liang, P.H., Wong, C.H.: New development of glycan arrays. Org. Biomol. Chem. 7, 2247–2254 (2009)CrossRefGoogle Scholar
  23. 23.
    Liang, P.H., Wu, C.Y., Greenberg, W.A., Wong, C.H.: Glycan arrays: biological and medical applications. Curr. Opin. Chem. Biol. 12, 86–92 (2008)CrossRefGoogle Scholar
  24. 24.
    Smith, D.F., Song, X., Cummings, R.D.: Use of glycan microarrays to explore specificity of glycan-binding proteins. Meth. Enzymol. 480, 417–444 (2010)CrossRefGoogle Scholar
  25. 25.
    Song, X., Heimburg-Molinaro, J., Cummings, R.D., Smith, D.F.: Chemistry of natural glycan microarrays. Curr. Opin. Chem. Biol. 18, 70–77 (2014)CrossRefGoogle Scholar
  26. 26.
    Smith, D.F., Cummings, R.D.: Investigating virus–glycan interactions using glycan microarrays. Curr Opin Virol. 7, 79–87 (2014)CrossRefGoogle Scholar
  27. 27.
    Alvarez, R.A., Blixt, O.: Identification of ligand specificities for glycan-binding proteins using glycan arrays. Meth. Enzymol. 415, 292–310 (2006)CrossRefGoogle Scholar
  28. 28.
    Oyelaran, O., Gildersleeve, J.C.: Glycan arrays: recent advances and future challenges. Curr. Opin. Chem. Biol. 13, 406–413 (2009)CrossRefGoogle Scholar
  29. 29.
    Hsu, K.L., Mahal, L.K.: Sweet tasting chips: microarray-based analysis of glycans. Curr. Opin. Chem. Biol. 13, 427–432 (2009)CrossRefGoogle Scholar
  30. 30.
    Katrlı’k, J., Sˇvitel, J., Gemeiner, P., Kozˇa’r, T., Tkac, J.: Glycan and lectin microarrays for Glycomics and medicinal applications. Med. Res. Rev. 30, 394–418 (2010)Google Scholar
  31. 31.
    Geissner, A., Anish, C., Seeberger, P.H.: Glycan arrays as tools for infectious disease research. Curr. Opin. Chem. Biol. 18, 38–45 (2014)CrossRefGoogle Scholar
  32. 32.
    Seeberger, P.H.: Glycan arrays and other tools produced by automated glycan assembly. Perspectives in Science. 11, 11–17 (2017)CrossRefGoogle Scholar
  33. 33.
    Brewer, C.F., Miceli, M.C., Baum, L.G.: Clusters, bundles, arrays and lattices: novel mechanisms for lectin–saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12, 616–623 (2002)CrossRefGoogle Scholar
  34. 34.
    Lee, Y.C., Lee, R.T.: Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj. J. 17, 543–551 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Glycomics Research Laboratory, Institute of Molecular and Cellular Biology, College of MedicineChang-Gung UniversityKwei-sanTaiwan
  2. 2.Ta-Cheng Stem Cell Therapy CenterNational Taiwan UniversityTaipeiTaiwan
  3. 3.Division of Hematology, Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan

Personalised recommendations