Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices

  • João C. Silva
  • Marta S. Carvalho
  • Xiaorui Han
  • Ke Xia
  • Paiyz E. Mikael
  • Joaquim M. S. Cabral
  • Frederico Castelo Ferreira
  • Robert J. LinhardtEmail author
Original Article


The extracellular matrix (ECM) is a highly dynamic and complex meshwork of proteins and glycosaminoglycans (GAGs) with a crucial role in tissue homeostasis and organization not only by defining tissue architecture and mechanical properties, but also by providing chemical cues that regulate major biological processes. GAGs are associated with important physiological functions, acting as modulators of signaling pathways regulating several cellular processes such as cell growth and differentiation. Recently, in vitro fabricated cell-derived ECM have emerged as promising materials for regenerative medicine due to their ability of better recapitulate the native ECM-like composition and structure, without the limitations of availability and pathogen transfer risks of tissue-derived ECM scaffolds. However, little is known about the molecular and more specifically, GAG composition of these cell-derived ECM. In this study, three different cell-derived ECM were produced in vitro and characterized in terms of their GAG content, composition and sulfation patterns using a highly sensitive liquid chromatography-tandem mass spectrometry technique. Distinct GAG compositions and disaccharide sulfation patterns were verified for the different cell-derived ECM. Additionally, the effect of decellularization method on the GAG and disaccharide relative composition was also assessed. In summary, the method presented here offers a novel approach to determine the GAG composition of cell-derived ECM, which we believe is critical for a better understanding of ECM role in directing cellular responses and has the potential for generating important knowledge to use in the development of novel ECM-like biomaterials for tissue engineering applications.


Glycosaminoglycans Compositional analysis, Cell-derived extracellular matrix Disaccharides Chondrocytes Mesenchymal stem cells 



This work was supported by funding received by iBB-Institute for Bioengineering and Biosciences through Programa Operacional Regional de Lisboa 2020 (Project N. 007317), through the EU COMPETE Program and from National Funds through FCT-Portuguese Foundation for Science and Technology under the Programme grant UID/BIO/04565/2013 and by the European Union Framework Programme for Research and Innovation HORIZON 2020, under the Teaming Grant agreement No 739572 – The Discoveries Centre for Regenerative and Precision Medicine. This study was also supported by Center for Biotechnology and Interdisciplinary Studies-Rensselaer Polytechnic Institute funds and by the National Institutes of Health (Grant # DK111958). João C. Silva and Marta S. Carvalho would also like to acknowledge FCT for financial support through the scholarships SFRH/BD/105771/2014 and SFRH/BD/52478/2014, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2019_9858_MOESM1_ESM.pdf (461 kb)
ESM 1 (PDF 460 kb)


  1. 1.
    Lu, H., Hoshiba, T., Kawazoe, N., Koda, I., Song, M., Chen, G.: Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials. 32, 9658–9666 (2011). CrossRefGoogle Scholar
  2. 2.
    Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016). CrossRefGoogle Scholar
  3. 3.
    Bonnans, C., Chou, J., Werb, Z.: Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014). CrossRefGoogle Scholar
  4. 4.
    Gilbert, T.W., Sellaro, T.L., Badylak, S.F.: Decellularization of tissues and organs. Biomaterials. 27, 3675–3683 (2006). Google Scholar
  5. 5.
    Badylak, S.F., Taylor, D., Uygun, K.: Whole organ tissue engineering: Decellularization and Recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2010). CrossRefGoogle Scholar
  6. 6.
    Wong, M.L., Griffiths, L.G.: Immunogenicity in xenogeneic scaffold generation: Antigen removal vs. decellularization. Acta Biomater. 10, 1806–1816 (2014). CrossRefGoogle Scholar
  7. 7.
    Hoshiba, T., Lu, H., Kawazoe, N., Chen, G.: Decellularized matrices for tissue engineering. Expert. Opin. Biol. Ther. 10, 1717–1728 (2010). CrossRefGoogle Scholar
  8. 8.
    Lu, H., Hoshiba, T., Kawazoe, N., Chen, G.: Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 32, 2489–2499 (2011). CrossRefGoogle Scholar
  9. 9.
    Kang, Y., Kim, S., Bishop, J., Khademhosseini, A., Yang, Y.: The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials. 33, 6998–7007 (2012). CrossRefGoogle Scholar
  10. 10.
    Zeitouni, S., Krause, U., Clough, B.H., Halderman, H., Falster, A., Blalock, D.T., Chaput, C.D., Sampson, H.W., Gregory, C.A.: Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci. Transl. Med. 4, 132–155 (2012). CrossRefGoogle Scholar
  11. 11.
    Yang, Y., Lin, H., Shen, H., Wang, B., Lei, G., Tuan, R.S.: Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater. 69, 71–82 (2018). CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Zhu, Y., Li, J., Guo, Q., Peng, J., Liu, S., Yang, J., Wang, Y.: Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng. B Rev. 22, 193–207 (2016). CrossRefGoogle Scholar
  13. 13.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J., Horwitz, E.M.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315–317 (2006). CrossRefGoogle Scholar
  14. 14.
    Murphy, M.B., Moncivais, K., Caplan, A.I.: Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine, (2013)Google Scholar
  15. 15.
    Jin, C.Z., Choi, B.H., Park, S.R., Min, B.H.: Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J. Biomed. Mater. Res. A. 92, 1567–1577 (2010). Google Scholar
  16. 16.
    Park, Y.B., Seo, S., Kim, J.A., Heo, J.C., Lim, Y.C., Ha, C.W.: Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells. Biomed. Mater. 10, (2015).
  17. 17.
    Linhardt, R.J., Toida, T.: Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37, 431–438 (2004). CrossRefGoogle Scholar
  18. 18.
    Gasimli, L., Linhardt, R.J., Dordick, J.S.: Proteoglycans in stem cells. Biotechnol. Appl. Biochem. 59, 65–76 (2012). CrossRefGoogle Scholar
  19. 19.
    Weyers, A., Linhardt, R.J.: Neoproteoglycans in tissue engineering. FEBS J. 280, 2511–2522 (2013). CrossRefGoogle Scholar
  20. 20.
    Wang, M., Liu, X., Lyu, Z., Gu, H., Li, D., Chen, H.: Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf. B: Biointerfaces. 150, 175–182 (2017). CrossRefGoogle Scholar
  21. 21.
    Papy-Garcia, D., Albanese, P.: Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj. J. 34, 377–391 (2017). CrossRefGoogle Scholar
  22. 22.
    Gasimli, L., Hickey, A.M., Yang, B., Li, G., Dela Rosa, M., Nairn, A.V., Kulik, M.J., Dordick, J.S., Moremen, K.W., Dalton, S., Linhardt, R.J.: Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim. Biophys. Acta, Gen. Subj. 1840, 1993–2003 (2014). CrossRefGoogle Scholar
  23. 23.
    Kjellén, L., Lindahl, U.: Specificity of glycosaminoglycan–protein interactions. Curr. Opin. Struct. Biol. 50, 101–108 (2018). CrossRefGoogle Scholar
  24. 24.
    Ibrahimi, O.A., Zhang, F., Hrstka, S.C.L., Mohammadi, M., Linhardt, R.J.: Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly. Biochemistry. 43, 4724–4730 (2004). CrossRefGoogle Scholar
  25. 25.
    Cool, S.M., Nurcombe, V.: The osteoblast-heparan sulfate axis: control of the bone cell lineage. Int. J. Biochem. Cell Biol. 37, 1739–1745 (2005). CrossRefGoogle Scholar
  26. 26.
    Uygun, B.E., Stojsih, S.E., Matthew, H.W.T.: Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng. A. 15, 3499–3512 (2009). CrossRefGoogle Scholar
  27. 27.
    Dombrowski, C., Song, S.J., Chuan, P., Lim, X., Susanto, E., Sawyer, A.A., Woodruff, M.A., Hutmacher, D.W., Nurcombe, V., Cool, S.M.: Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 18, 661–670 (2009). CrossRefGoogle Scholar
  28. 28.
    Manton, K.J., Leong, D.F.M., Cool, S.M., Nurcombe, V.: Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells. 25, 2845–2854 (2007). CrossRefGoogle Scholar
  29. 29.
    Celikkin, N., Rinoldi, C., Costantini, M., Trombetta, M., Rainer, A., Święszkowski, W.: Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater. Sci. Eng. C. 78, 1277–1299 (2017). CrossRefGoogle Scholar
  30. 30.
    Pfeifer, C.G., Berner, A., Koch, M., Krutsch, W., Kujat, R., Angele, P., Nerlich, M., Zellner, J.: Higher ratios of hyaluronic acid enhance chondrogenic differentiation of human MSCs in a hyaluronic acid-gelatin composite scaffold. Materials (Basel). 9, (2016).
  31. 31.
    Christiansen-Weber, T., Noskov, A., Cardiff, D., Garitaonandia, I., Dillberger, A., Semechkin, A., Gonzalez, R., Kern, R.: Supplementation of specific carbohydrates results in enhanced deposition of chondrogenic-specific matrix during mesenchymal stem cell differentiation. J. Tissue Eng. Regen. Med. 12, 1261–1272 (2018). CrossRefGoogle Scholar
  32. 32.
    Amann, E., Wolff, P., Breel, E., van Griensven, M., Balmayor, E.R.: Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater. 52, 130–144 (2017). CrossRefGoogle Scholar
  33. 33.
    Weyers, A., Yang, B., Yoon, D.S., Park, J.-H., Zhang, F., Lee, K.B., Linhardt, R.J.: A structural analysis of Glycosaminoglycans from lethal and nonlethal breast Cancer tissues: toward a novel class of Theragnostics for personalized medicine in oncology? OMICS 16, 79–89 (2012). CrossRefGoogle Scholar
  34. 34.
    Heiskanen, A., Hirvonen, T., Salo, H., Impola, U., Olonen, A., Laitinen, A., Tiitinen, S., Natunen, S., Aitio, O., Miller-Podraza, H., Wuhrer, M., Deelder, A.M., Natunen, J., Laine, J., Lehenkari, P., Saarinen, J., Satomaa, T., Valmu, L.: Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj. J. 26, 367–384 (2009). CrossRefGoogle Scholar
  35. 35.
    Hasehira, K., Hirabayashi, J., Tateno, H.: Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells. Glycoconj. J. 34, 797–806 (2017). CrossRefGoogle Scholar
  36. 36.
    Kubaski, F., Osago, H., Mason, R.W., Yamaguchi, S., Kobayashi, H., Tsuchiya, M., Orii, T., Tomatsu, S.: Glycosaminoglycans detection methods : applications of mass spectrometry. Mol. Genet. Metab. 120, 67–77 (2017). CrossRefGoogle Scholar
  37. 37.
    Sun, X., Li, L., Overdier, K.H., Ammons, L.A., Douglas, I.S., Burlew, C.C., Zhang, F., Schmidt, E.P., Chi, L., Linhardt, R.J.: Analysis of Total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal. Chem. 87, 6220–6227 (2015). CrossRefGoogle Scholar
  38. 38.
    Oguma, T., Tomatsu, S., Montano, A.M., Okazaki, O.: Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal. Biochem. 368, 79–86 (2007). CrossRefGoogle Scholar
  39. 39.
    Wang, C., Lang, Y., Li, Q., Jin, X., Li, G., Yu, G.: Glycosaminoglycanomic profiling of human milk in different stages of lactation by liquid chromatography-tandem mass spectrometry. Food Chem. 258, 231–236 (2018). CrossRefGoogle Scholar
  40. 40.
    Li, G., Li, L., Tian, F., Zhang, L., Xue, C., Linhardt, R.J.: Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem. Biol. 10, 1303–1310 (2015). CrossRefGoogle Scholar
  41. 41.
    Liu, X., Krishnamoorthy, D., Lin, L., Xue, P., Zhang, F., Chi, L., Linhardt, R.J., Iatridis, J.C.: A method for characterising human intervertebral disc glycosaminoglycan disaccharides using liquid chromatography-mass spectrometry with multiple reaction monitoring. Eur. Cell. Mater. 35, 117–131 (2018). CrossRefGoogle Scholar
  42. 42.
    Dos Santos, F., Andrade, P.Z., Boura, J.S., Abecasis, M.M., da Silva, C.L., Cabral, J.M.S.: Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J. Cell. Physiol. 223, 27–35 (2010). Google Scholar
  43. 43.
    Santhagunam, A., Dos Santos, F., Madeira, C., Salgueiro, J.B., Cabral, J.M.S.: Isolation and ex vivo expansion of synovial mesenchymal stromal cells for cartilage repair. Cytotherapy. 16, 440–453 (2013). CrossRefGoogle Scholar
  44. 44.
    Guneta, V., Zhou, Z., Tan, N.S., Sugii, S., Wong, M.T.C., Choong, C.: Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater. Sci. 6, 168–178 (2018). CrossRefGoogle Scholar
  45. 45.
    Hoshiba, T., Lu, H., Kawazoe, N., Yamada, T., Chen, G.: Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions. Biotechnol. Prog. 29, 1331–1336 (2013). CrossRefGoogle Scholar
  46. 46.
    Kaukonen, R., Jacquemet, G., Hamidi, H., Ivaska, J.: Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat. Protoc. 12, 2376–2390 (2017). CrossRefGoogle Scholar
  47. 47.
    Ragelle, H., Naba, A., Larson, B.L., Zhou, F., Prijić, M., Whittaker, C.A., Del Rosario, A., Langer, R., Hynes, R.O., Anderson, D.G.: Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials. 128, 147–159 (2017). CrossRefGoogle Scholar
  48. 48.
    Knudson, C.B., Knudson, W.: Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69–78 (2001). CrossRefGoogle Scholar
  49. 49.
    Roughle, P.J.: The structure and function of cartilage Proteoglicans. Eur. Cell. Mater. 12, 92–101 (2006)CrossRefGoogle Scholar
  50. 50.
    Mouw, J.K., Case, N.D., Guldberg, R.E., Plaas, A.H.K., Levenston, M.E.: Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartil. 13, 828–836 (2005). CrossRefGoogle Scholar
  51. 51.
    Lauder, R.M., Huckerby, T.N., Brown, G.M., Bayliss, M.T., Nieduszynski, I.a.: Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan. Biochem. J. 358, 523–528 (2001). CrossRefGoogle Scholar
  52. 52.
    Sharma, A., Rees, D., Roberts, S., Kuiper, N.J.: A case study: glycosaminoglycan profiles of autologous chondrocyte implantation (ACI) tissue improve as the tissue matures. Knee. 24, 149–157 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • João C. Silva
    • 1
    • 2
    • 3
  • Marta S. Carvalho
    • 1
    • 3
    • 4
  • Xiaorui Han
    • 2
  • Ke Xia
    • 2
  • Paiyz E. Mikael
    • 2
  • Joaquim M. S. Cabral
    • 1
    • 3
  • Frederico Castelo Ferreira
    • 1
    • 3
  • Robert J. Linhardt
    • 2
    • 4
    Email author return OK on get
  1. 1.Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  4. 4.Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations