Advertisement

Glycoconjugate Journal

, Volume 35, Issue 6, pp 561–574 | Cite as

Chemical characterization of the milk oligosaccharides of some Artiodactyla species including giraffe (Giraffa camelopardalis), sitatunga (Tragelaphus spekii), deer (Cervus nippon yesoensis) and water buffalo (Bubalus bubalis)

  • Yuri Mineguchi
  • Midori Miyoshi
  • Epi Taufik
  • Ayumi Kawamura
  • Takuya Asakawa
  • Isao Suzuki
  • Kousaku Souma
  • Michiko Okubo
  • Tadao Saito
  • Kenji Fukuda
  • Sadaki Asakuma
  • Tadasu Urashima
Original Article

Abstract

Mammalian milk/colostrum usually contains oligosaccharides along with the predominant disaccharide lactose. It has been found that the number and identity of these milk oligosaccharides varies among mammalian species. Oligosaccharides predominate over lactose in the milk/colostrum of Arctoidea species (Carnivora), whereas lactose predominates over milk oligosaccharides in Artiodactyla including cow, sheep, goat, camel, reindeer and pig. To clarify whether heterogeneity of a variety of milk oligosaccharides is found within other species of Artiodactyla, they were studied in the milk of giraffe, sitatunga, deer and water buffalo. The following oligosaccharides were found: Neu5Ac(α2–3)[GalNAc(β1–4)]Gal(β1–4)Glc (GM2 tetrasaccharide), and Gal(α1–3)Gal(β1–4)Glc (isoglobotriose) in giraffe milk; Neu5Ac(α2–3)Gal(β1–4)Glc (3’-SL), Neu5Ac(α2–6)Gal(β1–4)Glc (6’-SL), Gal(α1–4)Gal(β1–4)Glc (globotriose) and isoglobotriose in sitatunga colostrum; Gal(β1–3)Gal(β1–4)Glc (3′-GL), Gal(β1–6)Gal(β1–4)Glc (6′-GL), isoglobotriose, Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (lacto-N-neotetraose, LNnT), Gal(β1–4)Glc-3’-O-SO3 (3’-O-lactose sulphate) in deer milk; 3′-GL, isoglobotriose and Gal(β1–3)Gal(β1–3)Gal(β1–4)Glc (3′,3″-digalactosyllactose, DGL) in water buffalo colostrum. Thus it was shown that the milk oligosaccharides are heterogeneous among these Artiodactyla species.

Keywords

Milk oligosaccharides Giraffe Sitatunga Deer Water buffalo Artiodactyla 

Notes

Acknowledgements

We thank to Mr. Katsumasa Tomita of Shiretoko Ezoshika Farm for supplying deer milk. This work was supported by a Grant-in-Aid for Scientific Research ©, grant No. 16 K08003, from the Japan Society for the Promotion of Science, Sports and Culture (Japan), and a grant from Yotsuba Milk Products Co. (Japan). We thank Directorate of Higher Education of Republic Indonesia through foreign collaboration research scheme 2018 for supporting the collection and analysis of water buffalo colostrum.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2018_9849_MOESM1_ESM.pdf (98 kb)
Supplementary Fig. 1 Thin layer chromatogram of the fractions of SCG-4, SC-4, D-5 and B-4 separated from milk or colostrum of giraffe, sitatunga, deer and water buffalo, respectively, by gel filtration on BioGel P-2 (see Fig. 1). Acetone/2-propanol/0.1 mol lactic acid (2:2:1, v/v/v) was used as a developing solvent. Detection of the spots was done by spraying with 5% H2SO4 in ethanol and heating. The lanes are as follows: a, authentic lactose; b, SCG-4; c, SC-4; d, D-5; e, B-4. (PDF 97 kb)
10719_2018_9849_MOESM2_ESM.pdf (176 kb)
Supplementary Fig. 2 1H-NMR spectrum of the oligosaccharide in fraction of SCG-1_10 separated from giraffe milk (see Fig. 2a). The spectrum was obtained in D2O at 600 MHz with a Varian INOVA 600 spectrometer operated at 293 K. Chemical shifts are expressed relative to internal 3-(trimethylsilyl)-1-propane sulfuric acid, sodium salt, but were actually measured by reference to internal acetone (δ = 2.225). (PDF 176 kb)
10719_2018_9849_MOESM3_ESM.pdf (99 kb)
Supplementary Fig. 3 Matrix-assisted, laser-desorption time-of-flight mass spectrum of the oligosaccharide in fraction of SCG-1_10. The mass spectrometry was performed using an Autoflex II TOF/TOF mass spectrometer (Brucker Daltonics, Bremen, Germany). Lyophilized oligosaccharide fractions were dissolved in 1 μL of milli-Q water. The oligosaccharide solution was mixed with an equal volume of 10 mg/mL. SDHB (Brucker Daltonics), which is a mixture of 2,5-dihydrobenzoic acid and 2-hydroxy-5-methoxybenzoic acid, saturated in milli-Q water, spotted on a MTP 384 target plate ground steel TF (Bruker Daltnics), and dried. Mass spectra were obtained using a pre-installed method, RP_0–2 kDa (a reflector positive ion mode focusing on the mass range up to 2 kDa). (PDF 98 kb)
10719_2018_9849_MOESM4_ESM.pdf (164 kb)
Supplementary Fig. 4 1H-NMR spectrum of the oligosaccharide in fraction of SC-3 separated from sitatunga colostrum (see Fig. 1b). The spectrum was obtained in D2O at 500 MHz with a JEOL ECP-500 Fourier transform-NMR spectrometer operated at 293 K. (PDF 163 kb)
10719_2018_9849_MOESM5_ESM.pdf (183 kb)
Supplementary Fig. 5 1H-NMR spectrum of the oligosaccharide in fraction of SC-1_1 separated from sitatunga colostrum (see Fig. 3a). The spectrum was obtained in D2O at at 600 MHz with a Varian INOVA 600 spectrometer operated at 293 K. (PDF 183 kb)
10719_2018_9849_MOESM6_ESM.pdf (88 kb)
Supplementary Fig. 6 Matrix-assisted, laser-desorption time-of-flight mass spectrum of the oligosaccharide in fraction of SC-1_1. (PDF 87 kb)
10719_2018_9849_MOESM7_ESM.pdf (273 kb)
Supplementary Fig. 7 1H-NMR spectrum of the oligosaccharide in fraction of D-4 separated from deer milk (see Fig. 1c). The spectrum was obtained in D2O at 500 MHz with a JEOL ECP-500 Fourier transform-NMR spectrometer operated at 293 K. (PDF 272 kb)
10719_2018_9849_MOESM8_ESM.pdf (222 kb)
Supplementary Fig. 8 1H-NMR spectrum of the oligosaccharide in fraction of B-2_10 separated from water buffalo colostrum (see Fig. 4a). The spectrum was obtained in D2O at 500 MHz with a JEOL ECP-500 Fourier transform-NMR spectrometer operated at 293 K. (PDF 222 kb)

References

  1. 1.
    Urashima, T., Messer, M., Oftedal, O.T.: Oligosaccharides in milk of other mammals. In: McGuire, M., McGuire, M., Bode, L. (eds.) Prebiotics and Probiotics in Human Milk, pp. 45–139. Academic Press, Amsterdam (2016)Google Scholar
  2. 2.
    Jenness, R.E., Regehr, E.A., Sloan, R.E.: Comparative studies of milks. II. Dialyzable carbohydrates. Comp. Biochem. Physiol. 13, 339–352 (1964)CrossRefGoogle Scholar
  3. 3.
    Urashima, T., Saito, T., Nakamura, T., Messer, M.: Oligosaccharides of milk and colostrum in non-human mammals. Glyconj. J. 18, 357–371 (2001)CrossRefGoogle Scholar
  4. 4.
    Urashima, T., Hirabayashi, J., Sato, S., Kobata, A.: Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30, SE51–SE65 (2018)CrossRefGoogle Scholar
  5. 5.
    Bode, L.: Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 22, 1147–1162 (2012)CrossRefGoogle Scholar
  6. 6.
    Urashima, T., Messer, M., Oftedal, O.T.: Comparative biochemistry and evolution of milk oligosaccharides of monotremes, marsupials, and eutherians. In: Pontarotti, P. (ed.) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life, pp. 3–33. Springer, Cham (2014)Google Scholar
  7. 7.
    Saito, T., Itoh, T., Adachi, S.: Presence of two neutral disaccharides containing N-acetylhexosamine in bovine colostrum as free forms. Biochim. Biophys. Acta. 801, 147–150 (1984)CrossRefGoogle Scholar
  8. 8.
    Saito, T., Itoh, T., Adachi, S.: Chemical structure of three neutral trisaccharides isolated in free forms from bovine colostrum. Carbohydr. Res. 165, 43–51 (1987)CrossRefGoogle Scholar
  9. 9.
    Urashima, T., Saito, T., Ohmisya, K., Shimazaki, K.: Structural determination of three neutral oligosaccharides in bovine (Holstein-Friesian) colostrum, including the novel trisaccharide, GalNAcα1-3Galβ1-4Glc. Biochim. Biophys. Acta. 1073, 225–229 (1991)CrossRefGoogle Scholar
  10. 10.
    Marino, K., Lane, J.A., Abrahams, J.L., Struwe, W.B., Harvey, D.J., Morotta, M., Hickey, R.M., Rudd, P.M.: Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology. 21, 1317–1330 (2011)CrossRefGoogle Scholar
  11. 11.
    Albrecht, S., Lane, J.A., Marino, K., Al Busadah, K.A., Carrington, S.D., Hickey, R.M., Rudd, P.M.: A comparative study of free oligosaccharides in the milk of domestic animals. Br. J. Nutr. 111, 1313–1328 (2014)CrossRefGoogle Scholar
  12. 12.
    Nakamura, T., Urashima, T., Nakagawa, M., Saito, T.: Sialyllactose occurs as free lactones in ovine colostrum. Biochim. Biophys. Acta. 1381, 286–292 (1998)CrossRefGoogle Scholar
  13. 13.
    Sasaki, M., Nakamura, T., Hirayama, K., Fukuda, K., Saito, T., Urashima, T., Asakuma, S.: Characterization of two novel sialyl N-acetyllactosaminyl nucleotides separated from ovine colostrum. Glycoconj. J. 33, 789–796 (2016)CrossRefGoogle Scholar
  14. 14.
    Urashima, T., Saito, T., Nishimura, J., Ariga, H.: New galactosyllactose containing α-glycosidic linkage isolated from ovine (Booroola dorset) colostrum. Biochim. Biophys. Acta. 992, 375–378 (1989)CrossRefGoogle Scholar
  15. 15.
    Urashima, T., Bubb, W.A., Messer, M., Tsuji, Y., Taneda, Y.: Studies of the neutral trisaccharides of goats (Capra hircus) colostrum and of the one- and two-dimentional 1H and 13C NMR spectra of 6’-N-acetyllactosaminyllactose. Carbohydr. Res. 262, 173–184 (1994)CrossRefGoogle Scholar
  16. 16.
    Urashima, T., Murata, S., Nakamura, T.: Structural determination of monosialyl trisaccharides obtained from caprine colostrum. Comp. Biochem. Physiol. B116, 431–435 (1997)CrossRefGoogle Scholar
  17. 17.
    Fukuda, K., Yamamoto, A., Ganzorig, K., Khuukhenbaatar, J., Senda, A., Saito, T., Urashima, T.: Chemical characterization of the oligosaccharides in Bacterian camel (Camelus Bactrianus) milk and colostrum. J. Dairy Sci. 93, 5572–5587 (2010)CrossRefGoogle Scholar
  18. 18.
    Taufik, E., Ganzorig, K., Nansalmaa, M., Fukuda, R., Fukuda, K., Saito, T., Urashima, T.: Chemical characterization of saccharides in the milk of a reindeer (Rangifer tarandus tarandus). Int. Dairy J. 34, 104–108 (2014)CrossRefGoogle Scholar
  19. 19.
    Ganzorig, K., Asakawa, T., Sasaki, M., Saito, T., Suzuki, I., Fukuda, K., Urashima, T.: Identification of sialyl oligosaccharides including an oligosaccharide nucleotide in colostrum of an addax (Addax nasomaculatus) (subfamily Antelopinae). Anim. Sci. J. 89, 167–175 (2018)CrossRefGoogle Scholar
  20. 20.
    Dubois, M., Gills, K.A., Hamilton, J.K., Roberts, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  21. 21.
    Jourdian, G.W., Dean, L., Roseman, S.: The sialic acid XI. A periodate – resorcinol method for the quantitative estimateon of free sialic acids and their glycolsides. J. Biol. Chem. 256, 430–435 (1971)Google Scholar
  22. 22.
    Uemura, Y., Asakuma, S., Nakamura, T., Arai, I., Taki, M., Urashima, T.: Occurrence of a unique sialyl tetrasaccharide in colostrum of a bottlenose dolphin (Tursiops trunkatus). Biochim. Biophys. Acta. 1725, 290–297 (2005)CrossRefGoogle Scholar
  23. 23.
    Bubb, W.A., Urashima, T., Kohso, K., Nakamuta, T., Arai, I., Saito, T.: Occurrence of an unusuall lactose sulfate in dog milk. Carbohydr. Res. 318, 123–128 (1999)CrossRefGoogle Scholar
  24. 24.
    Urashima, T., Fujita, S., Fukuda, K., Nakamura, T., Saito, T., Cowan, P., Messer, M.: Chemical characterization of milk oligosaccharides of the common brushtail possum (Trichosurus vulpecula). Glycoconj. J. 31, 387–399 (2014)CrossRefGoogle Scholar
  25. 25.
    Urashima, T., Yamaguchi, E., Ohshima, T., Fukuda, K., Saito, T.: Chemical structures of oligosaccharides in milk of the raccoon (Procyon lotor). Glycoconj. J. 35, 275–286 (2018)CrossRefGoogle Scholar
  26. 26.
    Urashima, T., Kusaka, Y., Nakamura, T., Saito, T., Maeda, N., Messer, M.: Chemical characterization of milk oligosaccharides of the brown bear, Ursus arctos yesoensis. Biochim. Biophys. Acta. 1334, 247–255 (1997)CrossRefGoogle Scholar
  27. 27.
    Urashima, T., Sumiyoshi, W., Nakamura, T., Arai, I., Saito, T., Komatsu, T., Tsubota, T.: Chemical characterization of milk oligosaccharides of the Japanese black bear, Ursus thibetanus japonicus. Biochim. Biophys. Acta. 1472, 290–306 (1999)CrossRefGoogle Scholar
  28. 28.
    Urashima, T., Yamashita, T., Nakamura, T., Arai, I., Saito, T., Derocher, A.E., Wiig, O.: Chemical characterization of milk oligosaccharides of the polar bear, Ursus maritimus. Biochim. Biophys. Acta. 1475, 395–408 (2000)CrossRefGoogle Scholar
  29. 29.
    Urashima, T., Arita, M., Yoshida, M., Nakamura, T., Arai, I., Saito, T., Arnould, J.P.Y., Kovacs, K.M., Lydersen, C.: Chemical characterization of the oligosaccharides in hooded seal (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp. Biochem. Physiol. B128, 307–323 (2001)CrossRefGoogle Scholar
  30. 30.
    Urashima, T., Nakamura, T., Yamaguchi, K., Munakata, J., Arai, I., Saito, T., Lydersen, C., Kovacs, K.M.: Chemical characterization of the oligosaccharides in milk of high Arctic harbor seal (Phoca vitulina vitulina). Comp. Biochem. Physiol. A135, 549–563 (2003)CrossRefGoogle Scholar
  31. 31.
    Urashima, T., Nakamura, T., Nakagawa, D., Noda, M., Arai, I., Saito, T., Lydersen, C., Kovacs, K.M.: Characterization of oligosaccharides in milk of bearded seal (Erignathus barbatus). Comp. Biochem. Physiol. B138, 1–18 (2004)CrossRefGoogle Scholar
  32. 32.
    Urashima, T., Nakamura, T., Ikeda, A., Asakuma, S., Arai, I., Saito, T., Oftedal, O.T.: Characterization of oligosaccharides in milk of a mink, Mustela vison. Comp. Biochem. Physiol. A142, 461–471 (2005)CrossRefGoogle Scholar
  33. 33.
    Taufik, E., Sekii, N., Senda, A., Fukuda, K., Saito, T., Eisert, R., Oftedal, O.T., Urashima, T.: Neutral and acidic milk oligosaccharides of the striped skunk (Mephitidae: Mephilis mephilis). Anim. Sci. J. 84, 569–578 (2013)CrossRefGoogle Scholar
  34. 34.
    Urashima, T., Yamamoto, M., Nakamura, T., Arai, I., Saito, T., Namiki, M., Yamaoka, K., Kawahara, K.: Chemical characterisation of the oligosaccharides in a sample of milk of a white-nosed coati, Nasua narica (Procyonidae: Carnivora). Comp. Biochem. Physiol. A123, 187–193 (1999)CrossRefGoogle Scholar
  35. 35.
    Nakamura, T., Urashima, T., Mizukami, T., Fukushima, M., Arai, I., Senshu, T., Imazu, K., Nakao, T., Saito, T., Ye, Z., Zuo, H., Wu, K.: Composition and oligosaccharides of a milk sample of the giant panda, Ailuropoda melanoleuca. Comp. Biochem. Physiol. B135, 439–448 (2003)CrossRefGoogle Scholar
  36. 36.
    Uemura, Y., Takahashi, S., Senda, A., Fukuda, K., Saito, T., Oftedal, O.T., Urashima, T.: Chemical characterization of milk oligosaccharides of a spotted hyena (crocuta crocuta). Comp. Biochem. Physiol. A152, 158–161 (2009)CrossRefGoogle Scholar
  37. 37.
    Senda, A., Hatakeyama, E., Kobayashi, R., Fukuda, K., Uemura, Y., Saito, T., Packer, C., Oftedal, O.T., Urashima, T.: Chemical characterization of milk oligosaccharides of an African lion (Panthera leo) and a clouded leopard (Neofelis nebulosa). Anim. Sci. J. 81, 687–693 (2010)CrossRefGoogle Scholar
  38. 38.
    Urashima, T., Messer, M.: Evolution of milk oligosaccharides and their function in monotremes and marsupials. In: Pontarotti, P. (ed.) Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolition, Methods and Concepts, pp. 237–256. Springer, Swizzerland (2017)Google Scholar
  39. 39.
    Collins, J.G., Bradbury, J.H., Trifonoff, E., Messer, M.: Structures of four new oligosaccharides from marsupial milk, determined mainly by 13C-NMR spectroscopy. Carbohydr. Res. 92, 136–140 (1981)CrossRefGoogle Scholar
  40. 40.
    Urashima, T., Taufik, E., Fukuda, R., Nakamura, T., Fukuda, K., Saito, T., Messer, M.: Chemical characterization of milk oligosaccharides of the koala (Phascolarctos cineus). Glycoconj. J. 30, 801–811 (2013)CrossRefGoogle Scholar
  41. 41.
    Hirayama, K., Taufik, E., Kikuchi, M., Nakamura, T., Gukuda, F., Saito, K., Newgrain, K., Green, B., Messer, M., Urashima, T.: Chemical characterization of milk oligosaccharides of the common wombat (Vombatus ursinus). Anim. Sci. J. 87, 1167–1177 (2016)CrossRefGoogle Scholar
  42. 42.
    Urashima, T., Sun, Y., Fukuda, K., Hirayama, K., Taufik, E., Nakamura, T., Saito, T., Merchant, J., Green, B., Messer, M.: Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyusus viverrinus). Glycoconj. J. 32, 361–370 (2015)CrossRefGoogle Scholar
  43. 43.
    Urashima, T., Yamamoto, T., Hirayama, K., Fukuda, K., Nakamura, T., Saito, T., Newgrain, K., Merchant, J., Green, B., Messer, M.: Chemical characterization of milk oligosaccharides of the tiger quoll (Dasyurus maculatus), a marsupial. Glycoconj. J. 33, 797–807 (2016)CrossRefGoogle Scholar
  44. 44.
    Vicaretti, S., Mohtarudin, N., Garner, A., Zandberg, W.F.: Cappilary electrophoresis analysis of bovine milk oligosaccharides permits an assessment of the influence of diet and the discovery of nine abundant sulfated analogues. J. Agr. Food Chem. 66, 8574–8583 (2018).  https://doi.org/10.1021/acs.jafc.8b01041 CrossRefGoogle Scholar
  45. 45.
    Taufik, E., Fukuda, K., Senda, A., Saito, T., Williams, C., Tilden, C., Eisert, R., Oftedal, O.T., Urashima, T.: Structural characterization of neutrall and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel’s sifaka and mongoose lemur. Glycoconj. J. 29, 119–134 (2012)CrossRefGoogle Scholar
  46. 46.
    Goto, K., Fukuda, K., Senda, A., Saito, T., Kimura, K., Glander, K.E., Hinde, K., Dittus, W., Milligan, L.A., Power, M.L., Oftedal, O.T., Urashima, T.: Chemical characterization of oligosaccharides in the milk of six species of new and old world monkeys. Glycoconj. J. 27, 703–715 (2010)CrossRefGoogle Scholar
  47. 47.
    Urashima, T., Kobayashi, M., Asakuma, S., Uemura, Y., Arai, I., Fukuda, K., Saito, T., Mogoe, T., Ishikawa, H., Fukui, Y.: Chemical characterization of the oligosaccharides in Bryde’s whale (Balaenoptera edeni) and sei whale (Balaenoptera borealis lesson) milk. Comp. Biochem. Physiol. B146, 153–159 (2007)CrossRefGoogle Scholar
  48. 48.
    Kobata, A.: Structures and application of oligosaccharides in human milk. Proc. Jpn. Acad. Ser. B86, 731–747 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuri Mineguchi
    • 1
  • Midori Miyoshi
    • 1
  • Epi Taufik
    • 2
  • Ayumi Kawamura
    • 3
  • Takuya Asakawa
    • 4
  • Isao Suzuki
    • 4
  • Kousaku Souma
    • 5
  • Michiko Okubo
    • 5
  • Tadao Saito
    • 6
  • Kenji Fukuda
    • 1
  • Sadaki Asakuma
    • 7
  • Tadasu Urashima
    • 1
  1. 1.Department of Life and Food ScienceObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Faculty of Animal ScienceBogor Agricultural UniversityBogorIndonesia
  3. 3.Kyoto City ZooKyotoJapan
  4. 4.Himeji Central ParkHimejiJapan
  5. 5.Department of Northern Biosphere Agriculture, Faculty of Bioindustry, Tokyo University of AgricultureAbashiriJapan
  6. 6.Graduate School of AgricultureTohoku UniversitySendaiJapan
  7. 7.Intensive Grazing Research TeamNational Agricultural Research Center for Hokkaido RegionSapporoJapan

Personalised recommendations