Advertisement

Glycoconjugate Journal

, Volume 35, Issue 6, pp 499–509 | Cite as

Improvement of electrospray stability in negative ion mode for nano-PGC-LC-MS glycoanalysis via post-column make-up flow

  • Terry Nguyen-Khuong
  • Alexander Pralow
  • Udo Reichl
  • Erdmann RappEmail author
Short Communication

Abstract

Analysis of glycans via a porous graphitized carbon liquid chromatography (PGC-LC) coupled with electrospray ionization (tandem) mass spectrometry (ESI-MS(/MS)) is a powerful analytical method in the field of glycomics. Isobaric glycan structures can be identified reliably with the help of PGC-LC separation and subsequent identification by ESI-MS(/MS) in negative ion mode. In an effort to adapt PGC-LC-ESI-MS(/MS) to the nano-scale operation, spray instability along the nano-PGC-LC gradient was repeatedly observed on an LTQ Orbitrap Elite mass spectrometer equipped with a standard nano-electrospray ionization source. A stable electrospray was achieved with the implementation of a post-column make-up flow (PCMF). Thereby, acetonitrile was used to supplement the eluate from the nano-PGC-LC column. The improved spray stability enhanced detection and resolution of glycans during the analysis. This was in particular the case for smaller O-glycans which elute early in the high aqueous content regime of the nano-PGC-LC elution gradient. This study introduces PCMF as an easy-to-use instrumental adaptation to significantly improve spray stability in negative ion mode nano-PGC-LC-ESI-MS(/MS)-based analysis of glycans.

Keywords

Glycans Glycomics Mass spectrometry Nano-electrospray Nano-liquid chromatography Negative ion mode Orbitrap Porous graphitized carbon Post-column make-up flow Stability 

Abbreviations

ABC

ammonium bicarbonate

BPC

base peak chromatogram

C18

octadecyl carbon chain

DTT

dithiothreitol

EIC

extracted ion chromatogram

ESI

electrospray ionization

HCD

higher-energy collisional dissociation

HILIC

hydrophilic interaction liquid chromatography

HPLC

high-performance liquid chromatography

IAA

iodoacetamide

ID

inner diameter

KOH

potassium hydroxide

LC-MS

liquid chromatography coupled to mass spectrometry

MS

mass spectrometry

MS/MS

tandem mass spectrometry

NaBH4

sodium borohydride

OD

outer diameter

PCMF

post-column make-up flow

PGC

porous graphitized carbon

UPLC

ultra performance liquid chromatography

Notes

Acknowledgements

TNK and ER were supported by the European Commission (EC) under the FP7 project “HTP-GlycoMet – Methods for high-throughput glycoproteomic analysis” (grant no. 324400). ER acknowledges support by the German Research Foundation (DFG) under the project “The concert of dolichol-based glycosylation: from molecules to disease models” (grant identifier FOR2509), by the German Federal Ministry of Education and Research (BMBF) under the project “Die Golgi Glykan Fabrik 2.0” (grant identifier 031C557), and by the European Commission (EC) under the H2020 project “IMforFuture” (grant no. 721815).

We want to thank Marcus Hoffmann and Alexander Behne for their contribution in editing the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Varki, A., Hart, G.W.: Essentials of Glycobiology. Cold Spring Harbor Laboratory Press (2017)Google Scholar
  2. 2.
    Varki, A.: Biological roles of glycans. Glycobiology. 27(1), 3–49 (2017)CrossRefGoogle Scholar
  3. 3.
    Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science. 291(5512), 2364–2369 (2001)CrossRefGoogle Scholar
  4. 4.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3(2), 97–130 (1993)CrossRefGoogle Scholar
  5. 5.
    Moremen, K.W., Tiemeyer, M., Nairn, A.V.: Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 13(7), 448–462 (2012).  https://doi.org/10.1038/nrm3383 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Woods, R.J.: Three-dimensional structures of oligosaccharides. Curr. Opin. Struct. Biol. 5(5), 591–598 (1995)CrossRefGoogle Scholar
  7. 7.
    Wang, J.-R., Gao, W.-N., Grimm, R., Jiang, S., Liang, Y., Ye, H., Li, Z.-G., Yau, L.-F., Huang, H., Liu, J.: A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat. Commun. 8(1), 631 (2017)CrossRefGoogle Scholar
  8. 8.
    Pomin, V.H.: Sulfated glycans in inflammation. Eur. J. Med. Chem. 92, 353–369 (2015)CrossRefGoogle Scholar
  9. 9.
    Yoshimura, T., Hayashi, A., Handa-Narumi, M., Yagi, H., Ohno, N., Koike, T., Yamaguchi, Y., Uchimura, K., Kadomatsu, K., Sedzik, J.: GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system. Sci. Rep. 7, 42257 (2017)CrossRefGoogle Scholar
  10. 10.
    Takashiba, M., Chiba, Y., Jigami, Y.: Identification of phosphorylation sites in N-linked glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 78(14), 5208–5213 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhang, L., Luo, S., Zhang, B.: Glycan analysis of therapeutic glycoproteins. MAbs. 8(2), 205–215 (2016).  https://doi.org/10.1080/19420862.2015.1117719 CrossRefPubMedGoogle Scholar
  12. 12.
    Aich, U., Lakbub, J., Liu, A.: State-of-the-art technologies for rapid and high-throughput sample preparation and analysis of N-glycans from antibodies. Electrophoresis. 37(11), 1468–1488 (2016).  https://doi.org/10.1002/elps.201500551 CrossRefPubMedGoogle Scholar
  13. 13.
    Guile, G.R., Rudd, P.M., Wing, D.R., Prime, S.B., Dwek, R.A.: A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240(2), 210–226 (1996).  https://doi.org/10.1006/abio.1996.0351 CrossRefPubMedGoogle Scholar
  14. 14.
    Rudd, P.M., Dwek, R.A.: Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr. Opin. Biotechnol. 8(4), 488–497 (1997)CrossRefGoogle Scholar
  15. 15.
    Ahn, J., Bones, J., Yu, Y.Q., Rudd, P.M., Gilar, M.: Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. Journal Chromatogr. B, Anal Technol Biomed Life Sci. 878(3–4), 403–408 (2010).  https://doi.org/10.1016/j.jchromb.2009.12.013 CrossRefGoogle Scholar
  16. 16.
    Callewaert, N., Geysens, S., Molemans, P., Contreras, R.: Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology. 11(4), 275–281 (2001).  https://doi.org/10.1093/glycob/11.4.275 CrossRefPubMedGoogle Scholar
  17. 17.
    Schwarzer, J., Rapp, E., Reichl, U.: N-glycan analysis by CGE-LIF: profiling influenza a virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis. 29(20), 4203–4214 (2008).  https://doi.org/10.1002/elps.200800042 CrossRefPubMedGoogle Scholar
  18. 18.
    Schwarzer, J., Rapp, E., Hennig, R., Genzel, Y., Jordan, I., Sandig, V., Reichl, U.: Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine. 27(32), 4325–4336 (2009).  https://doi.org/10.1016/j.vaccine.2009.04.076 CrossRefPubMedGoogle Scholar
  19. 19.
    Ruhaak, L.R., Hennig, R., Huhn, C., Borowiak, M., Dolhain, R.J., Deelder, A.M., Rapp, E., Wuhrer, M.: Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J. Proteome Res. 9(12), 6655–6664 (2010)CrossRefGoogle Scholar
  20. 20.
    Hennig, R., Rapp, E., Kottler, R., Cajic, S., Borowiak, M., Reichl, U.: N-Glycosylation fingerprinting of viral glycoproteins by xCGE-LIF. Methods Mol. Biol. 1331, 123–143 (2015).  https://doi.org/10.1007/978-1-4939-2874-3_8 CrossRefPubMedGoogle Scholar
  21. 21.
    Wuhrer, M., de Boer, A.R., Deelder, A.M.: Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28(2), 192–206 (2009).  https://doi.org/10.1002/mas.20195 CrossRefPubMedGoogle Scholar
  22. 22.
    Jensen, P.H., Karlsson, N.G., Kolarich, D., Packer, N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012).  https://doi.org/10.1038/nprot.2012.063 CrossRefPubMedGoogle Scholar
  23. 23.
    Everest-Dass, A.V., Kolarich, D., Campbell, M.P., Packer, N.H.: Tandem mass spectra of glycan substructures enable the multistage mass spectrometric identification of determinants on oligosaccharides. Rapid Commun Mass Spectrom : RCM. 27(9), 931–939 (2013).  https://doi.org/10.1002/rcm.6527 CrossRefPubMedGoogle Scholar
  24. 24.
    Reiding, K.R., Blank, D., Kuijper, D.M., Deelder, A.M., Wuhrer, M.: High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal. Chem. 86(12), 5784–5793 (2014).  https://doi.org/10.1021/ac500335t CrossRefPubMedGoogle Scholar
  25. 25.
    Kolarich, D., Windwarder, M., Alagesan, K., Altmann, F.: Isomer-specific analysis of released N-Glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol. Biol. 1321, 427–435 (2015).  https://doi.org/10.1007/978-1-4939-2760-9_29 CrossRefPubMedGoogle Scholar
  26. 26.
    Wuhrer, M., Deelder, A.M., Hokke, C.H.: Protein glycosylation analysis by liquid chromatography-mass spectrometry. Journal Chromatogr. B, Anal Technol Biomed Life Sci. 825(2), 124–133 (2005).  https://doi.org/10.1016/j.jchromb.2005.01.030 CrossRefGoogle Scholar
  27. 27.
    Reiding, K.R., Lonardi, E., Hipgrave Ederveen, A.L., Wuhrer, M.: Ethyl esterification for MALDI-MS analysis of protein glycosylation. Methods Mol. Biol. 1394, 151–162 (2016).  https://doi.org/10.1007/978-1-4939-3341-9_11 CrossRefPubMedGoogle Scholar
  28. 28.
    Shubhakar, A., Kozak, R.P., Reiding, K.R., Royle, L., Spencer, D.I., Fernandes, D.L., Wuhrer, M.: Automated high-throughput Permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal. Chem. 88(17), 8562–8569 (2016).  https://doi.org/10.1021/acs.analchem.6b01639 CrossRefPubMedGoogle Scholar
  29. 29.
    Kottler, R., Mank, M., Hennig, R., Muller-Werner, B., Stahl, B., Reichl, U., Rapp, E.: Development of a high-throughput glycoanalysis method for the characterization of oligosaccharides in human milk utilizing multiplexed capillary gel electrophoresis with laser-induced fluorescence detection. Electrophoresis. 34(16), 2323–2336 (2013).  https://doi.org/10.1002/elps.201300016 CrossRefPubMedGoogle Scholar
  30. 30.
    Rodig, J.V., Rapp, E., Bohne, J., Kampe, M., Kaffka, H., Bock, A., Genzel, Y., Reichl, U.: Impact of cultivation conditions on N-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Biotechnol. Bioeng. 110(6), 1691–1703 (2013).  https://doi.org/10.1002/bit.24834 CrossRefPubMedGoogle Scholar
  31. 31.
    Hutter, J., Rodig, J.V., Hoper, D., Seeberger, P.H., Reichl, U., Rapp, E., Lepenies, B.: Toward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicity. J. Immunol. 190(1), 220–230 (2013).  https://doi.org/10.4049/jimmunol.1201060 CrossRefPubMedGoogle Scholar
  32. 32.
    Hennig, R., Cajic, S., Borowiak, M., Hoffmann, M., Kottler, R., Reichl, U., Rapp, E.: Towards personalized diagnostics via longitudinal study of the human plasma N-glycome. Biochim. Biophys. Acta. 1860(8), 1728–1738 (2016).  https://doi.org/10.1016/j.bbagen.2016.03.035 CrossRefPubMedGoogle Scholar
  33. 33.
    Thiesler, C.T., Cajic, S., Hoffmann, D., Thiel, C., van Diepen, L., Hennig, R., Sgodda, M., Weibetamann, R., Reichl, U., Steinemann, D., Diekmann, U., Huber, N.M., Oberbeck, A., Cantz, T., Kuss, A.W., Korner, C., Schambach, A., Rapp, E., Buettner, F.F.: Glycomic characterization of induced pluripotent stem cells derived from a patient suffering from Phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG). Mol Cell Proteomics : MCP. 15(4), 1435–1452 (2016).  https://doi.org/10.1074/mcp.M115.054122 CrossRefPubMedGoogle Scholar
  34. 34.
    Konze, S.A., Cajic, S., Oberbeck, A., Hennig, R., Pich, A., Rapp, E., Buettner, F.F.R.: Quantitative assessment of sialo-glycoproteins and N-Glycans during Cardiomyogenic differentiation of human induced pluripotent stem cells. Chembiochem. 18(13), 1317–1331 (2017).  https://doi.org/10.1002/cbic.201700100 CrossRefPubMedGoogle Scholar
  35. 35.
    Ciucanu, I.: Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry. Anal. Chim. Acta. 576(2), 147–155 (2006).  https://doi.org/10.1016/j.aca.2006.06.009 CrossRefPubMedGoogle Scholar
  36. 36.
    Morelle, W., Michalski, J.C.: Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2(7), 1585–1602 (2007).  https://doi.org/10.1038/nprot.2007.227 CrossRefPubMedGoogle Scholar
  37. 37.
    Harvey, D.J.: Electrospray mass spectrometry and collision-induced fragmentation of 2-aminobenzamide-labelled neutral N-linked glycans. Analyst. 125(4), 609–617 (2000).  https://doi.org/10.1039/a908997g CrossRefGoogle Scholar
  38. 38.
    Melmer, M., Stangler, T., Schiefermeier, M., Brunner, W., Toll, H., Rupprechter, A., Lindner, W., Premstaller, A.: HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals. Anal. Bioanal. Chem. 398(2), 905–914 (2010).  https://doi.org/10.1007/s00216-010-3988-x CrossRefPubMedGoogle Scholar
  39. 39.
    Stockmann, H., O'Flaherty, R., Adamczyk, B., Saldova, R., Rudd, P.M.: Automated, high-throughput serum glycoprofiling platform. Integr Biol (Camb). 7(9), 1026–1032 (2015).  https://doi.org/10.1039/c5ib00130g CrossRefGoogle Scholar
  40. 40.
    Anumula, K.R., Dhume, S.T.: High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology. 8(7), 685–694 (1998)CrossRefGoogle Scholar
  41. 41.
    Klapoetke, S., Zhang, J., Becht, S., Gu, X., Ding, X.: The evaluation of a novel approach for the profiling and identification of N-linked glycan with a procainamide tag by HPLC with fluorescent and mass spectrometric detection. J. Pharm. Biomed. Anal. 53(3), 315–324 (2010).  https://doi.org/10.1016/j.jpba.2010.03.045 CrossRefPubMedGoogle Scholar
  42. 42.
    Lauber, M.A., Yu, Y.Q., Brousmiche, D.W., Hua, Z., Koza, S.M., Magnelli, P., Guthrie, E., Taron, C.H., Fountain, K.J.: Rapid preparation of released N-Glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal. Chem. 87(10), 5401–5409 (2015).  https://doi.org/10.1021/acs.analchem.5b00758 CrossRefPubMedGoogle Scholar
  43. 43.
    Tomiya, N., Awaya, J., Kurono, M., Endo, S., Arata, Y., Takahashi, N.: Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal. Biochem. 171(1), 73–90 (1988)CrossRefGoogle Scholar
  44. 44.
    Marino, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6(10), 713–723 (2010).  https://doi.org/10.1038/Nchembio.437 CrossRefPubMedGoogle Scholar
  45. 45.
    Nakano, M., Saldanha, R., Gobel, A., Kavallaris, M., Packer, N.H.: Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol. Cell. Proteomics : MCP. 10(11), M111 009001 (2011).  https://doi.org/10.1074/mcp.M111.009001 CrossRefPubMedGoogle Scholar
  46. 46.
    Everest-Dass, A.V., Jin, D.Y., Thaysen-Andersen, M., Nevalainen, H., Kolarich, D., Packer, N.H.: Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology. 22(11), 1465–1479 (2012).  https://doi.org/10.1093/glycob/cws112 CrossRefPubMedGoogle Scholar
  47. 47.
    Nguyen-Khuong, T., Everest-Dass, A.V., Kautto, L., Zhao, Z.J., Willcox, M.D.P., Packer, N.H.: Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology. 25(3), 269–283 (2015).  https://doi.org/10.1093/glycob/cwu108 CrossRefPubMedGoogle Scholar
  48. 48.
    Ashwood, C., Lin, C.H., Thaysen-Andersen, M., Packer, N.H.: Discrimination of isomers of released N- and O-Glycans using diagnostic product ions in negative ion PGC-LC-ESI-MS/MS. J. Am. Soc. Mass Spectrom. 29(6), 1194–1209 (2018).  https://doi.org/10.1007/s13361-018-1932-z CrossRefPubMedGoogle Scholar
  49. 49.
    Estrella, R.P., Whitelock, J.M., Packer, N.H., Karlsson, N.G.: Graphitized carbon LC− MS characterization of the chondroitin sulfate oligosaccharides of Aggrecan. Anal. Chem. 79(10), 3597–3606 (2007)CrossRefGoogle Scholar
  50. 50.
    Schulz, B.L., Sloane, A.J., Robinson, L.J., Prasad, S.S., Lindner, R.A., Robinson, M., Bye, P.T., Nielson, D.W., Harry, J.L., Packer, N.H.: Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology. 17(7), 698–712 (2007)CrossRefGoogle Scholar
  51. 51.
    Thomsson, K.A., Schulz, B.L., Packer, N.H., Karlsson, N.G.: MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology. 15(8), 791–804 (2005)CrossRefGoogle Scholar
  52. 52.
    Karlsson, N.G., Schulz, B.L., Packer, N.H.: Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J. Am. Soc. Mass Spectrom. 15(5), 659–672 (2004).  https://doi.org/10.1016/j.jasms.2004.01.002 CrossRefPubMedGoogle Scholar
  53. 53.
    Schulz, B.L., Oxley, D., Packer, N.H., Karlsson, N.G.: Identification of two highly sialylated human tear-fluid DMBT1 isoforms: the major high-molecular-mass glycoproteins in human tears. Biochem. J. 366(2), 511–520 (2002)CrossRefGoogle Scholar
  54. 54.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16(5), 631–646 (2005).  https://doi.org/10.1016/j.jasms.2005.01.005 CrossRefPubMedGoogle Scholar
  55. 55.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16(5), 647–659 (2005).  https://doi.org/10.1016/j.jasms.2005.01.006 CrossRefPubMedGoogle Scholar
  56. 56.
    Harvey, D.J., Royle, L., Radcliffe, C.M., Rudd, P.M., Dwek, R.A.: Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal. Biochem. 376(1), 44–60 (2008).  https://doi.org/10.1016/j.ab.2008.01.025 CrossRefPubMedGoogle Scholar
  57. 57.
    Everest-Dass, A.V., Abrahams, J.L., Kolarich, D., Packer, N.H., Campbell, M.P.: Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J. Am. Soc. Mass Spectrom. 24(6), 895–906 (2013).  https://doi.org/10.1007/s13361-013-0610-4 CrossRefPubMedGoogle Scholar
  58. 58.
    Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68(1), 1–8 (1996).  https://doi.org/10.1021/ac9509519 CrossRefPubMedGoogle Scholar
  59. 59.
    El-Faramawy, A., Siu, K.M., Thomson, B.A.: Efficiency of nano-electrospray ionization. J. Am. Soc. Mass Spectrom. 16(10), 1702–1707 (2005)CrossRefGoogle Scholar
  60. 60.
    Jensen, P.H., Kolarich, D., Packer, N.H.: Mucin-type O-glycosylation - putting the pieces together. FEBS J. 277(1), 81–94 (2010).  https://doi.org/10.1111/j.1742-4658.2009.07429.x CrossRefPubMedGoogle Scholar
  61. 61.
    Wisniewski, J.R., Zougman, A., Nagaraj, N., Mann, M.: Universal sample preparation method for proteome analysis. Nat. Methods. 6(5), 359–362 (2009).  https://doi.org/10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  62. 62.
    Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol nomenclature for graphical representations of Glycans. Glycobiology. 25(12), 1323–1324 (2015).  https://doi.org/10.1093/glycob/cwv091 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kawasaki, N., Ohta, M., Hyuga, S., Hyuga, M., Hayakawa, T.: Application of liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. Anal. Biochem. 285(1), 82–91 (2000).  https://doi.org/10.1006/abio.2000.4739 CrossRefPubMedGoogle Scholar
  64. 64.
    Kawasaki, N., Itoh, S., Ohta, M., Hayakawa, T.: Microanalysis of N-linked oligosaccharides in a glycoprotein by capillary liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Anal. Biochem. 316(1), 15–22 (2003)CrossRefGoogle Scholar
  65. 65.
    Karlsson, N.G., Wilson, N.L., Wirth, H.J., Dawes, P., Joshi, H., Packer, N.H.: Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun Mass Spectrom : RCM. 18(19), 2282–2292 (2004).  https://doi.org/10.1002/rcm.1626 CrossRefPubMedGoogle Scholar
  66. 66.
    Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79(13), 5051–5057 (2007).  https://doi.org/10.1021/ac070363i CrossRefPubMedGoogle Scholar
  67. 67.
    Hershberger, L.W., Callis, J.B., Christian, G.D.: Sub-microliter flow-through Cuvette for fluorescence monitoring of high-performance liquid-chromatographic effluents. Anal. Chem. 51(9), 1444–1446 (1979).  https://doi.org/10.1021/ac50045a021 CrossRefGoogle Scholar
  68. 68.
    Bruins, A.P., Covey, T.R., Henion, J.D.: Ion spray Interface for combined liquid chromatography/atmospheric pressure ionization mass-spectrometry. Anal. Chem. 59(22), 2642–2646 (1987).  https://doi.org/10.1021/ac00149a003 CrossRefGoogle Scholar
  69. 69.
    Straub, R.F., Voyksner, R.D.: Negative-ion formation in electrospray mass-spectrometry. J Am Soc Mass Spectrom. 4(7), 578–587 (1993).  https://doi.org/10.1016/1044-0305(93)85019-T CrossRefPubMedGoogle Scholar
  70. 70.
    Kohler, M., Leary, J.A.: Lc/Ms/Ms of carbohydrates with Postcolumn addition of metal chlorides using a Triaxial electrospray probe. Anal. Chem. 67(19), 3501–3508 (1995).  https://doi.org/10.1021/ac00115a019 CrossRefPubMedGoogle Scholar
  71. 71.
    Marginean, I., Kronewitter, S.R., Moore, R.J., Slysz, G.W., Monroe, M.E., Anderson, G., Tang, K.Q., Smith, R.D.: Improving N-glycan coverage using HPLC-MS with electrospray ionization at subambient pressure. Anal. Chem. 84(21), 9208–9213 (2012).  https://doi.org/10.1021/ac301961u CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ikonomou, M.G., Blades, A.T., Kebarle, P.: Electrospray mass-spectrometry of methanol and water solutions suppression of electric-discharge with Sf6 gas. J Am Soc Mass Spectrom. 2(6), 497–505 (1991).  https://doi.org/10.1016/1044-0305(91)80038-9 CrossRefPubMedGoogle Scholar
  73. 73.
    Kebarle, P.: A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom. 35(7), 804–817 (2000).  https://doi.org/10.1002/1096-9888(200007)35:7<804::Aid-Jms22>3.0.Co;2-Q CrossRefPubMedGoogle Scholar
  74. 74.
    Kurokawa, T., Wuhrer, M., Lochnit, G., Geyer, H., Markl, J., Geyer, R.: Hemocyanin from the keyhole limpet Megathura crenulata (KLH) carries a novel type of N-glycans with gal (β1–6) man-motifs. Eur. J. Biochem. 269(22), 5459–5473 (2002)CrossRefGoogle Scholar
  75. 75.
    Schmidt, A., Karas, M., Dulcks, T.: Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J. Am. Soc. Mass Spectrom. 14(5), 492–500 (2003).  https://doi.org/10.1016/S1044-0305(03)00128-4 CrossRefPubMedGoogle Scholar
  76. 76.
    Kebarle, P., Verkerk, U.H.: Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28(6), 898–917 (2009).  https://doi.org/10.1002/mas.20247 CrossRefPubMedGoogle Scholar
  77. 77.
    Yamashita, M., Fenn, J.B.: Negative-ion production with the electrospray ion-source. J. Phys. Chem. 88(20), 4671–4675 (1984).  https://doi.org/10.1021/j150664a046 CrossRefGoogle Scholar
  78. 78.
    Yamashita, M., Fenn, J.B.: Electrospray ion-source - another variation on the free-jet theme. J. Phys. Chem. 88(20), 4451–4459 (1984).  https://doi.org/10.1021/j150664a002 CrossRefGoogle Scholar
  79. 79.
    Staples, G.O., Naimy, H., Yin, H., Kileen, K., Kraiczek, K., Costello, C.E., Zaia, J.: Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal. Chem. 82(2), 516–522 (2010).  https://doi.org/10.1021/ac901706f CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ni, W., Bones, J., Karger, B.L.: In-depth characterization of N-linked oligosaccharides using fluoride-mediated negative ion microfluidic chip LC-MS. Anal. Chem. 85(6), 3127–3135 (2013).  https://doi.org/10.1021/ac3031898 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  2. 2.glyXera GmbHMagdeburgGermany
  3. 3.Chair of Bioprocess EngineeringOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations