Advertisement

Glycoconjugate Journal

, Volume 35, Issue 6, pp 493–498 | Cite as

Separation of glycosphingolipids with titanium dioxide

  • Ayaka Noda
  • Miki Kato
  • Shota Miyazaki
  • Mamoru Kyogashima
Short Communication

Abstract

We introduce the principle of a new technique to isolate glycosphingolipids (GSLs) from phospholipids. Neutral and acidic GSLs in organic solvent bind to titanium dioxide under neutral pH and can be eluted with 5 mg/ml of 2,5-dihydroxybenzoic acid in methanol. This special property is applicable for eliminating phospholipids, including sphingomyelin, which cannot be eliminated by a typical mild alkaline treatment. By using this technique, we demonstrated the rapid separation of minor components of GSLs, namely sulfatide and gangliosides from rabbit serum and liver, respectively. The minor GSL components were effectively purified despite both sources containing tremendous amount of phospholipids and simple lipids such as cholesterol, cholesteryl esters and triglycerides.

Keywords

Glycosphingolipids Gangliosides Sulfatide Titanium dioxide Sphingomyelin 

Notes

Acknowledgements

We thank Ms. Miyagawa for assistance with GC-FID. We thank Renee Mosi, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Conflicts of interest

This work was supported in part by G.L. Sciences Inc. Japan.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Hakomori, S.I.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim. Biophys. Acta. 1780, 325–346 (2008)CrossRefGoogle Scholar
  2. 2.
    Furukawa, K., Ohmi, Y., Kondo, Y., Ohkawa, Y., Tajima, O., Furukawa, K.: Regulatory function of glycosphingolipids in the inflammation and degeneration. Arch. Biochem. Biophys. 571, 58–65 (2015)CrossRefGoogle Scholar
  3. 3.
    Schnaar, R.L.: Kinoshita, T.:Glycosphingolipids. In: Varki, A., et al. (eds.) Essentials of Glycobiology, 3rd edn, pp. 125–135. Cold Spring Harbor Laboratory press, Cold Spring Harbor (2017)Google Scholar
  4. 4.
    Dowhan, W., Bogdanov, M., Mileykovskaya, E.: Functional roles of lipids in membranes. In: Ridgway, N., et al. (eds.) Biochemistry of Lipids, Lipoproteins and Membranes, 6th edn, pp. 1–40. Elsevier, Amsterdam (2016)Google Scholar
  5. 5.
    Folch, J., Lees, M., Sloane Stanley, G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)PubMedGoogle Scholar
  6. 6.
    Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)CrossRefGoogle Scholar
  7. 7.
    Ladisch, S., Gillard, B.: A solvent partition method for microscale ganglioside purification. Anal. Biochem. 146, 220–231 (1985)CrossRefGoogle Scholar
  8. 8.
    Schnaar, R.L.: Isolation of glycosphingolipids. Methods Enzymol. 230, 348–370 (1994)CrossRefGoogle Scholar
  9. 9.
    Hakomori, S.I., Siddiqui, B.: Isolation and characterization of glycosphingolipid from animal cells and their membranes. Methods Enzymol. 32, 345–367 (1974)CrossRefGoogle Scholar
  10. 10.
    Steil, D., Schepers, C.L., Pohlentz, G., Legros, N., Runde, J., Humpf, H.U., Karch, H., Müthing, J.: Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment. J. Lipid Res. 56, 2322–2236 (2015)CrossRefGoogle Scholar
  11. 11.
    Ito, E., Waki, H., Miseki, K., Shimada, T., Sato, T.A., Kakehi, K., Suzuki, M., Suzuki, A.: Structural characterization of neutral glycosphingolipids using high-performance liquid chromatography-electrospray ionization mass spectrometry with a repeated high-speed polarity and MSn switching system. Glycoconj. J. 30, 881–888 (2013)CrossRefGoogle Scholar
  12. 12.
    Fuller, M.D., Schwientek, T., Wandall, H.H., Pedersen, J.W., Clausen, H., Levery, S.B.: Structure elucidation of neutral, di-, tri-, and tetraglycosylceramides from high five cells: identification of a novel (non-arthro-series) glycosphingolipid pathway. Glycobiology. 15, 1286–1301 (2005)CrossRefGoogle Scholar
  13. 13.
    Westman, J.S., Benktander, J., Storry, J.R., Peyrard, T., Hult, A.K., Hellberg, Å., Teneberg, S., Olsson, M.L.: Identification of the molecular and genetic basis of PX2, a glycosphingolipid blood group antigen lacking on globoside-deficient erythrocytes. J. Biol. Chem. 290, 18505–18518 (2015)CrossRefGoogle Scholar
  14. 14.
    Tanaka, K., Yamada, M., Tamiya-Koizumi, K., Kannagi, R., Aoyama, T., Hara, A., Kyogashima, M.: Systematic analyses of free ceramide species and ceramide species comprising neutral glycosphingolipids by MALDI-TOF MS with high-energy CID. Glycoconj. J. 28, 67–87 (2011)CrossRefGoogle Scholar
  15. 15.
    Kawahara, M., Nakamura, H., Nakajima, T.: Group separation of ribonucleosides and deoxyribonucleosides on a new ceramic tetania column. Anal. Sci. 5, 763–764 (1989)CrossRefGoogle Scholar
  16. 16.
    Matsuda, H., Nakamura, H., Nakajima, T.: New ceramic Titania: selective adsorbent for organic phosphates. Anal. Sci. 6, 911–912 (1990)CrossRefGoogle Scholar
  17. 17.
    Pinkse, M.W.H., Uitto, P.M., Ooms, B., Heck, A.J.R.: Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide Precolumns. Anal. Chem. 76, 3935–3943 (2004)CrossRefGoogle Scholar
  18. 18.
    Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P., Jørgensen, T.J.: Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics. 4, 873–886 (2005)CrossRefGoogle Scholar
  19. 19.
    Ikeguchi, Y., Nakamura, H.: Selective enrichment of phospholipids by Titania. Anal. Sci. 16, 541–543 (2000)CrossRefGoogle Scholar
  20. 20.
    Gonzálvez, A., Preinerstorfer, B., Lindner, W.: Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC–ESI-MS/MS. Anal. Bioanal. Chem. 396, 2965–2975 (2010)CrossRefGoogle Scholar
  21. 21.
    Abe, K., Tamai, Y.: Simultaneous determination of methyl esters of α-hydroxy and nonhydroxy fatty acids from brain cerebroside by fused-silica capillary gas chromatography. J. Chromatogr. B. 232, 400–405 (1982)CrossRefGoogle Scholar
  22. 22.
    Yieru, H., Qingyu, O., Weile, Y.: Characteristics of flame ionization detection for the quantitative analysis of complex organic mixtures. Anal. Chem. 62, 2063–2064 (1990)CrossRefGoogle Scholar
  23. 23.
    Hara, A., Taketomi, T.: Occurrence of sulfatide as a major glycosphingolipid in WHHL rabbit serum lipoproteins. J. Biochem. (Tokyo). 102(83–92), (1987)CrossRefGoogle Scholar
  24. 24.
    Iwamori, M., Nagai, Y.: Comparative study on ganglioside compositions of various rabbit tissues. Tissue-specificity in ganglioside molecular species of rabbit thymus. Biochim. Biophys. Acta. 665, 214–220 (1981)CrossRefGoogle Scholar
  25. 25.
    Kyogashima, M., Tamiya-Koizumi, K., Ehara, T., Li, G., Hu, R., Hara, A., Aoyama, T., Kannagi, R.: Rapid demonstration of diversity of sulfatide molecular species from biological materials by MALDI-TOF MS. Glycobiology. 16, 719–728 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ayaka Noda
    • 1
  • Miki Kato
    • 1
  • Shota Miyazaki
    • 2
  • Mamoru Kyogashima
    • 1
  1. 1.Division of Microbiology and Molecular Cell BiologyNihon Pharmaceutical UniversitySaitamaJapan
  2. 2.GL Sciences Inc.SaitamaJapan

Personalised recommendations