Advertisement

Heparan sulfate S-domains and extracellular sulfatases (Sulfs): their possible roles in protein aggregation diseases

  • Kazuchika Nishitsuji
Mini-Review

Abstract

Highly sulfated domains of heparan sulfate (HS), also known as HS S-domains, consist of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)–]. The expression of HS S-domains at the cell surface is determined by two mechanisms: tightly regulated biosynthetic machinery and enzymatic remodeling by extracellular endoglucosamine 6-sulfatases, Sulf-1 and Sulf-2. Intracellular or extracellular deposits of misfolded and aggregated proteins are characteristic of protein aggregation diseases. Although proteins can aggregate alone, deposits of protein aggregates in vivo contain a number of proteinaceous and non-protein components. HS S-domains are one non-protein component of these aggregated deposits. HS S-domains are considered to be critical for signal transduction of several growth factors and several disease conditions, such as tumor progression, but their roles in protein aggregation diseases are not yet fully understood. This review summarizes the current understanding of the possible roles of HS S-domains and Sulfs in the formation and cytotoxicity of protein aggregates.

Keywords

Protein aggregation disease Amyloidosis Amyloid Glycosaminoglycan Heparan sulfate Sulf Sulfatase 

Abbreviations

Amyloid β protein

HS

Heparan sulfate

GAG

Glycosaminoglycan

AD

Alzheimer’s disease

AA

Amyloid A

SAA

Serum amyloid protein A

AL

Amyloid immunoglobulin light chain

β2-m

β2-microglobulin

ATTR

Amyloid transthyretin

IAPP

Islet amyloid polypeptide

HSPG

Heparan sulfate proteoglycan

GlcNAc

N-acetylglucosamine

GlcA

Glucuronic acid

IdoA

Iduronic acid

FGF

Fibroblast growth factor

VEGF

Vascular endothelial growth factor

GDNF

Glial cell line-derived neurotrophic factor

apoA-I

Apolipoprotein A-I

Notes

Acknowledgments

The author thanks Dr. Kenji Uchimura for critical reading and comments on the manuscript. The author would like to apologize to those whose work could not be directly cited because of space constraints. This work was partly supported by Grants-in-Aid for Young Scientists B-15 K19488 and B-17 K16123 from the Japan Society for the Promotion of Science.

Compliance with ethical standards

Conflicts of interest

Kazuchika Nishitsuji declares no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Dobson, C.M.: Protein misfolding, evolution and disease. Trends Biochem. Sci. 24(9), 329–332 (1999)PubMedCrossRefGoogle Scholar
  2. 2.
    Tan, S.Y., Pepys, M.B.: Amyloidosis. Histopathology. 25(5), 403–414 (1994)PubMedCrossRefGoogle Scholar
  3. 3.
    Kelly, J.W.: The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8(1), 101–106 (1998)PubMedCrossRefGoogle Scholar
  4. 4.
    Lansbury Jr., P.T.: Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. U. S. A. 96(7), 3342–3344 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)PubMedCrossRefGoogle Scholar
  6. 6.
    Perutz, M.F.: Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci. 24(2), 58–63 (1999)PubMedCrossRefGoogle Scholar
  7. 7.
    Nasr, S.H., Dasari, S., Hasadsri, L., Theis, J.D., Vrana, J.A., Gertz, M.A., Muppa, P., Zimmermann, M.T., Grogg, K.L., Dispenzieri, A., Sethi, S., Highsmith Jr., W.E., Merlini, G., Leung, N., Kurtin, P.J.: Novel type of renal amyloidosis derived from apolipoprotein-CII. J. Am. Soc. Nephrol. 28(2), 439–445 (2017)Google Scholar
  8. 8.
    Valleix, S., Verona, G., Jourde-Chiche, N., Nedelec, B., Mangione, P.P., Bridoux, F., Mange, A., Dogan, A., Goujon, J.M., Lhomme, M., Dauteuille, C., Chabert, M., Porcari, R., Waudby, C.A., Relini, A., Talmud, P.J., Kovrov, O., Olivecrona, G., Stoppini, M., Christodoulou, J., Hawkins, P.N., Grateau, G., Delpech, M., Kontush, A., Gillmore, J.D., Kalopissis, A.D., Bellotti, V.: D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile. Nat. Commun. 7, 10353 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Virchow, R.: Zur cellulosefrage. Virchows Arch. Pathol. Anat. Physiol. 6, 416–426 (1854)CrossRefGoogle Scholar
  10. 10.
    Friedrich, N., Kekule, A.: Zur amyloidfrage. Virchows Arch. Pathol. Anat. Physiol. 16, 50–65 (1859)CrossRefGoogle Scholar
  11. 11.
    Eanes, E.D., Glenner, G.G.: X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16(11), 673–677 (1968)PubMedCrossRefGoogle Scholar
  12. 12.
    Astbury, W.T., Dickinson, S., Bailey, K.: The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29(10), 2351–2360 (1935)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Snow, A.D., Kisilevsky, R.: Temporal relationship between glycosaminoglycan accumulation and amyloid deposition during experimental amyloidosis. A histochemical study. Lab. Investig. 53(1), 37–44 (1985)PubMedGoogle Scholar
  14. 14.
    Snow, A.D., Kisilevsky, R., Stephens, C., Anastassiades, T.: Characterization of tissue and plasma glycosaminoglycans during experimental AA amyloidosis and acute inflammation. Qualitative and quantitative analysis. Lab. Investig. 56(6), 665–675 (1987)PubMedGoogle Scholar
  15. 15.
    Snow, A.D., Willmer, J., Kisilevsky, R.: Sulfated glycosaminoglycans: a common constituent of all amyloids? Lab. Investig. 56(1), 120–123 (1987)PubMedGoogle Scholar
  16. 16.
    Snow, A.D., Willmer, J.P., Kisilevsky, R.: Sulfated glycosaminoglycans in Alzheimer's disease. Hum. Pathol. 18(5), 506–510 (1987)PubMedCrossRefGoogle Scholar
  17. 17.
    Ohishi, H., Skinner, M., Sato-Araki, N., Okuyama, T., Gejyo, F., Kimura, A., Cohen, A.S., Schmid, K.: Glycosaminoglycans of the hemodialysis-associated carpal synovial amyloid and of amyloid-rich tissues and fibrils of heart, liver, and spleen. Clin. Chem. 36(1), 88–91 (1990)PubMedGoogle Scholar
  18. 18.
    Linker, A., Carney, H.C.: Presence and role of glycosaminoglycans in amyloidosis. Lab. Investig. 57(3), 297–305 (1987)PubMedGoogle Scholar
  19. 19.
    Lyon, A.W., Narindrasorasak, S., Young, I.D., Anastassiades, T., Couchman, J.R., McCarthy, K.J., Kisilevsky, R.: Co-deposition of basement membrane components during the induction of murine splenic AA amyloid. Lab. Investig. 64(6), 785–790 (1991)PubMedGoogle Scholar
  20. 20.
    Young, I.D., Willmer, J.P., Kisilevsky, R.: The ultrastructural localization of sulfated proteoglycans is identical in the amyloids of Alzheimer's disease and AA, AL, senile cardiac and medullary carcinoma-associated amyloidosis. Acta Neuropathol. 78(2), 202–209 (1989)PubMedCrossRefGoogle Scholar
  21. 21.
    Young, I.D., Ailles, L., Narindrasorasak, S., Tan, R., Kisilevsky, R.: Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus. Arch. Pathol. Lab. Med. 116(9), 951–954 (1992)PubMedGoogle Scholar
  22. 22.
    Ailles, L., Kisilevsky, R., Young, I.D.: Induction of perlecan gene expression precedes amyloid formation during experimental murine AA amyloidogenesis. Lab. Investig. 69(4), 443–448 (1993)PubMedGoogle Scholar
  23. 23.
    Woodrow, S.I., Stewart, R.J., Kisilevsky, R., Gore, J., Young, I.D.: Experimental AA amyloidogenesis is associated with differential expression of extracellular matrix genes. Amyloid. 6(1), 22–30 (1999)PubMedCrossRefGoogle Scholar
  24. 24.
    Kolset, S.O., Pejler, G.: Serglycin: a structural and functional chameleon with wide impact on immune cells. J. Immunol. 187(10), 4927–4933 (2011)PubMedCrossRefGoogle Scholar
  25. 25.
    Lehri-Boufala, S., Ouidja, M.O., Barbier-Chassefiere, V., Henault, E., Raisman-Vozari, R., Garrigue-Antar, L., Papy-Garcia, D., Morin, C.: New roles of glycosaminoglycans in alpha-synuclein aggregation in a cellular model of Parkinson disease. PLoS One. 10(1), e0116641 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., Zako, M.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999)PubMedCrossRefGoogle Scholar
  27. 27.
    O'Callaghan, P., Sandwall, E., Li, J.P., Yu, H., Ravid, R., Guan, Z.Z., van Kuppevelt, T.H., Nilsson, L.N., Ingelsson, M., Hyman, B.T., Kalimo, H., Lindahl, U., Lannfelt, L., Zhang, X.: Heparan sulfate accumulation with Abeta deposits in Alzheimer's disease and Tg2576 mice is contributed by glial cells. Brain Pathol. 18(4), 548–561 (2008)PubMedPubMedCentralGoogle Scholar
  28. 28.
    Scholefield, Z., Yates, E.A., Wayne, G., Amour, A., McDowell, W., Turnbull, J.E.: Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's beta-secretase. J. Cell Biol. 163(1), 97–107 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Iozzo, R.V.: Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell Biol. 6(8), 646–656 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    Castillo, G.M., Ngo, C., Cummings, J., Wight, T.N., Snow, A.D.: Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer's disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J. Neurochem. 69(6), 2452–2465 (1997)PubMedCrossRefGoogle Scholar
  31. 31.
    Timmer, N.M., van Horssen, J., Otte-Holler, I., Wilhelmus, M.M., David, G., van Beers, J., de Waal, R.M., Verbeek, M.M.: Amyloid beta induces cellular relocalization and production of agrin and glypican-1. Brain Res. 1260, 38–46 (2009)PubMedCrossRefGoogle Scholar
  32. 32.
    Wien, T.N., Sorby, R., Omtvedt, L.A., Landsverk, T., Husby, G.: Kinetics of glycosaminoglycan deposition in splenic AA amyloidosis induced in mink. Scand. J. Immunol. 60(6), 600–608 (2004)PubMedCrossRefGoogle Scholar
  33. 33.
    Liu, I.H., Uversky, V.N., Munishkina, L.A., Fink, A.L., Halfter, W., Cole, G.J.: Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation. Glycobiology. 15(12), 1320–1331 (2005)PubMedCrossRefGoogle Scholar
  34. 34.
    Esko, J.D., Lindahl, U.: Molecular diversity of heparan sulfate. J. Clin. Invest. 108(2), 169–173 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kusche-Gullberg, M.: Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13(5), 605–611 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    Rosen, S.D., Lemjabbar-Alaoui, H.: Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets. 14(9), 935–949 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446(7139), 1030–1037 (2007)PubMedCrossRefGoogle Scholar
  38. 38.
    Gallagher, J.T.: Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108(3), 357–361 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Turnbull, J.E., Gallagher, J.T.: Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem. J. 273(Pt 3), 553–559 (1991)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S., Rosen, S.D.: Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 277(51), 49175–49185 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dennissen, M.A., Jenniskens, G.J., Pieffers, M., Versteeg, E.M., Petitou, M., Veerkamp, J.H., van Kuppevelt, T.H.: Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J. Biol. Chem. 277(13), 10982–10986 (2002)PubMedCrossRefGoogle Scholar
  42. 42.
    Jenniskens, G.J., Oosterhof, A., Brandwijk, R., Veerkamp, J.H., van Kuppevelt, T.H.: Heparan sulfate heterogeneity in skeletal muscle basal lamina: demonstration by phage display-derived antibodies. J. Neurosci. 20(11), 4099–4111 (2000)PubMedCrossRefGoogle Scholar
  43. 43.
    Hossain, M.M., Hosono-Fukao, T., Tang, R., Sugaya, N., van Kuppevelt, T.H., Jenniskens, G.J., Kimata, K., Rosen, S.D., Uchimura, K.: Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology. 20(2), 175–186 (2010)PubMedCrossRefGoogle Scholar
  44. 44.
    Dhoot, G.K., Gustafsson, M.K., Ai, X., Sun, W., Standiford, D.M., Emerson Jr., C.P.: Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 293(5535), 1663–1666 (2001)PubMedCrossRefGoogle Scholar
  45. 45.
    Ohto, T., Uchida, H., Yamazaki, H., Keino-Masu, K., Matsui, A., Masu, M.: Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage. Genes Cells. 7(2), 173–185 (2002)PubMedCrossRefGoogle Scholar
  46. 46.
    Tang, R., Rosen, S.D.: Functional consequences of the subdomain organization of the sulfs. J. Biol. Chem. 284(32), 21505–21514 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Frese, M.A., Milz, F., Dick, M., Lamanna, W.C., Dierks, T.: Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. J. Biol. Chem. 284(41), 28033–28044 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nagamine, S., Keino-Masu, K., Shiomi, K., Masu, M.: Proteolytic cleavage of the rat heparan sulfate 6-O-endosulfatase SulfFP2 by furin-type proprotein convertases. Biochem. Biophys. Res. Commun. 391(1), 107–112 (2010)PubMedCrossRefGoogle Scholar
  49. 49.
    Ai, X., Do, A.T., Lozynska, O., Kusche-Gullberg, M., Lindahl, U., Emerson Jr., C.P.: QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 162(2), 341–351 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ai, X., Kitazawa, T., Do, A.T., Kusche-Gullberg, M., Labosky, P.A., Emerson Jr., C.P.: SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development. 134(18), 3327–3338 (2007)PubMedCrossRefGoogle Scholar
  51. 51.
    Uchimura, K., Morimoto-Tomita, M., Bistrup, A., Li, J., Lyon, M., Gallagher, J., Werb, Z., Rosen, S.D.: HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem. 7, 2 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Viviano, B.L., Paine-Saunders, S., Gasiunas, N., Gallagher, J., Saunders, S.: Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J. Biol. Chem. 279(7), 5604–5611 (2004)PubMedCrossRefGoogle Scholar
  53. 53.
    Mahley, R.W., Huang, Y.: Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J. Clin. Invest. 117(1), 94–98 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    MacArthur, J.M., Bishop, J.R., Stanford, K.I., Wang, L., Bensadoun, A., Witztum, J.L., Esko, J.D.: Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117(1), 153–164 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gustafsen, C., Olsen, D., Vilstrup, J., Lund, S., Reinhardt, A., Wellner, N., Larsen, T., Andersen, C.B.F., Weyer, K., Li, J.P., Seeberger, P.H., Thirup, S., Madsen, P., Glerup, S.: Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat. Commun. 8(1), 503 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hosono-Fukao, T., Ohtake-Niimi, S., Nishitsuji, K., Hossain, M.M., van Kuppevelt, T.H., Michikawa, M., Uchimura, K.: RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature. J. Neurosci. Res. 89(11), 1840–1848 (2011)PubMedCrossRefGoogle Scholar
  57. 57.
    Bruinsma, I.B., te Riet, L., Gevers, T., ten Dam, G.B., van Kuppevelt, T.H., David, G., Kusters, B., de Waal, R.M., Verbeek, M.M.: Sulfation of heparan sulfate associated with amyloid-beta plaques in patients with Alzheimer's disease. Acta Neuropathol. 119(2), 211–220 (2010)PubMedCrossRefGoogle Scholar
  58. 58.
    Hosono-Fukao, T., Ohtake-Niimi, S., Hoshino, H., Britschgi, M., Akatsu, H., Hossain, M.M., Nishitsuji, K., van Kuppevelt, T.H., Kimata, K., Michikawa, M., Wyss-Coray, T., Uchimura, K.: Heparan sulfate subdomains that are degraded by Sulf accumulate in cerebral amyloid β plaques of Alzheimer’s disease: evidence from mouse models and patients. Am. J. Pathol. 180(5), 2056–2067 (2012)PubMedCrossRefGoogle Scholar
  59. 59.
    Sepulveda-Diaz, J.E., Alavi Naini, S.M., Huynh, M.B., Ouidja, M.O., Yanicostas, C., Chantepie, S., Villares, J., Lamari, F., Jospin, E., van Kuppevelt, T.H., Mensah-Nyagan, A.G., Raisman-Vozari, R., Soussi-Yanicostas, N., Papy-Garcia, D.: HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology. Brain. 138(Pt 5), 1339–1354 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Roberts, R.O., Kang, Y.N., Hu, C., Moser, C.D., Wang, S., Moore, M.J., Graham, R.P., Lai, J.-P., Petersen, R.C., Roberts, L.R.: Decreased expression of sulfatase 2 in the brains of Alzheimer’s disease patients: implications for regulation of neuronal cell signaling. J. Alzheimers Dis. Rep. 1(1), 115–124 (2017)CrossRefGoogle Scholar
  61. 61.
    Nagamine, S., Tamba, M., Ishimine, H., Araki, K., Shiomi, K., Okada, T., Ohto, T., Kunita, S., Takahashi, S., Wismans, R.G., van Kuppevelt, T.H., Masu, M., Keino-Masu, K.: Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J. Biol. Chem. 287(12), 9579–9590 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Paris, D., Ganey, N., Banasiak, M., Laporte, V., Patel, N., Mullan, M., Murphy, S.F., Yee, G.T., Bachmeier, C., Ganey, C., Beaulieu-Abdelahad, D., Mathura, V.S., Brem, S., Mullan, M.: Impaired orthotopic glioma growth and vascularization in transgenic mouse models of Alzheimer's disease. J. Neurosci. 30(34), 11251–11258 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kalaria, R.N., Cohen, D.L., Premkumar, D.R., Nag, S., LaManna, J.C., Lust, W.D.: Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62(1), 101–105 (1998)PubMedCrossRefGoogle Scholar
  64. 64.
    Tarkowski, E., Issa, R., Sjogren, M., Wallin, A., Blennow, K., Tarkowski, A., Kumar, P.: Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging. 23(2), 237–243 (2002)PubMedCrossRefGoogle Scholar
  65. 65.
    Morimoto-Tomita, M., Uchimura, K., Bistrup, A., Lum, D.H., Egeblad, M., Boudreau, N., Werb, Z., Rosen, S.D.: Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia. 7(11), 1001–1010 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ryu, J.K., Cho, T., Choi, H.B., Wang, Y.T., McLarnon, J.G.: Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology. J. Neurosci. 29(1), 3–13 (2009)PubMedCrossRefGoogle Scholar
  67. 67.
    Zlokovic, B.V.: Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28(4), 202–208 (2005)PubMedCrossRefGoogle Scholar
  68. 68.
    Kalus, I., Rohn, S., Puvirajesinghe, T.M., Guimond, S.E., Eyckerman-Kolln, P.J., Ten Dam, G., van Kuppevelt, T.H., Turnbull, J.E., Dierks, T.: Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS One. 10(10), e0139853 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Horonchik, L., Tzaban, S., Ben-Zaken, O., Yedidia, Y., Rouvinski, A., Papy-Garcia, D., Barritault, D., Vlodavsky, I., Taraboulos, A.: Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem. 280(17), 17062–17067 (2005)PubMedCrossRefGoogle Scholar
  70. 70.
    Hijazi, N., Kariv-Inbal, Z., Gasset, M., Gabizon, R.: PrPSc incorporation to cells requires endogenous glycosaminoglycan expression. J. Biol. Chem. 280(17), 17057–17061 (2005)PubMedCrossRefGoogle Scholar
  71. 71.
    Shyng, S.L., Lehmann, S., Moulder, K.L., Harris, D.A.: Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem. 270(50), 30221–30229 (1995)PubMedCrossRefGoogle Scholar
  72. 72.
    Hooper, N.M.: Glypican-1 facilitates prion conversion in lipid rafts. J. Neurochem. 116(5), 721–725 (2011)PubMedCrossRefGoogle Scholar
  73. 73.
    Bazar, E., Sheynis, T., Dorosz, J., Jelinek, R.: Heparin inhibits membrane interactions and lipid-induced fibrillation of a prion amyloidogenic determinant. Chembiochem. 12(5), 761–767 (2011)PubMedCrossRefGoogle Scholar
  74. 74.
    Kanekiyo, T., Zhang, J., Liu, Q., Liu, C.C., Zhang, L., Bu, G.: Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J. Neurosci. 31(5), 1644–1651 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nishitsuji, K., Hosono, T., Uchimura, K., Michikawa, M.: Lipoprotein lipase is a novel amyloid beta (Abeta)-binding protein that promotes glycosaminoglycan-dependent cellular uptake of Abeta in astrocytes. J. Biol. Chem. 286(8), 6393–6401 (2011)PubMedCrossRefGoogle Scholar
  76. 76.
    Timmer, N.M., Schirris, T.J., Bruinsma, I.B., Otte-Holler, I., van Kuppevelt, T.H., de Waal, R.M., Verbeek, M.M.: Aggregation and cytotoxic properties towards cultured cerebrovascular cells of Dutch-mutated Abeta40 (DAbeta(1–40)) are modulated by sulfate moieties of heparin. Neurosci. Res. 66(4), 380–389 (2010)PubMedCrossRefGoogle Scholar
  77. 77.
    Bergamaschini, L., Donarini, C., Rossi, E., De Luigi, A., Vergani, C., De Simoni, M.G.: Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiol. Aging. 23(4), 531–536 (2002)PubMedCrossRefGoogle Scholar
  78. 78.
    Holmes, B.B., DeVos, S.L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., Ouidja, M.O., Brodsky, F.M., Marasa, J., Bagchi, D.P., Kotzbauer, P.T., Miller, T.M., Papy-Garcia, D., Diamond, M.I.: Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. U. S. A. 110(33), E3138–E3147 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kuwabara, K., Nishitsuji, K., Uchimura, K., Hung, S.C., Mizuguchi, M., Nakajima, H., Mikawa, S., Kobayashi, N., Saito, H., Sakashita, N.: Cellular interaction and cytotoxicity of the Iowa mutation of apolipoprotein A-I (ApoA-IIowa) amyloid mediated by sulfate moieties of heparan sulfate. J. Biol. Chem. 290(40), 24210–24221 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kameyama, H., Nakajima, H., Nishitsuji, K., Mikawa, S., Uchimura, K., Kobayashi, N., Okuhira, K., Saito, H., Sakashita, N.: Iowa mutant apolipoprotein A-I (ApoA-IIowa) fibrils target lysosomes. Sci. Rep. 6, 30391 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nishitsuji, K., Saito, H., Uchimura, K.: Enzymatic remodeling of heparan sulfate: a therapeutic strategy for systemic and localized amyloidoses? Neural Regen. Res. 11(3), 408–409 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Burke, K.A., Yates, E.A., Legleiter, J.: Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front. Neurol. 4, 17 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Liu, C., Zhang, Y.: Nucleic acid-mediated protein aggregation and assembly. Adv. Protein Chem. Struct. Biol. 84, 1–40 (2011)PubMedCrossRefGoogle Scholar
  84. 84.
    Castillo, G.M., Cummings, J.A., Yang, W., Judge, M.E., Sheardown, M.J., Rimvall, K., Hansen, J.B., Snow, A.D.: Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan's enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes. 47(4), 612–620 (1998)PubMedCrossRefGoogle Scholar
  85. 85.
    Potter-Perigo, S., Hull, R.L., Tsoi, C., Braun, K.R., Andrikopoulos, S., Teague, J., Bruce Verchere, C., Kahn, S.E., Wight, T.N.: Proteoglycans synthesized and secreted by pancreatic islet beta-cells bind amylin. Arch. Biochem. Biophys. 413(2), 182–190 (2003)PubMedCrossRefGoogle Scholar
  86. 86.
    Jha, S., Patil, S.M., Gibson, J., Nelson, C.E., Alder, N.N., Alexandrescu, A.T.: Mechanism of amylin fibrillization enhancement by heparin. J. Biol. Chem. 286(26), 22894–22904 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Aguilera, J.J., Zhang, F., Beaudet, J.M., Linhardt, R.J., Colon, W.: Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid A. Biochimie. 104, 70–80 (2014)PubMedCrossRefGoogle Scholar
  88. 88.
    Takase, H., Tanaka, M., Yamamoto, A., Watanabe, S., Takahashi, S., Nadanaka, S., Kitagawa, H., Yamada, T., Mukai, T.: Structural requirements of glycosaminoglycans for facilitating amyloid fibril formation of human serum amyloid A. Amyloid. 23(2), 67–75 (2016)PubMedCrossRefGoogle Scholar
  89. 89.
    Ancsin, J.B., Kisilevsky, R.: The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J. Biol. Chem. 274(11), 7172–7181 (1999)PubMedCrossRefGoogle Scholar
  90. 90.
    Blancas-Mejia, L.M., Hammernik, J., Marin-Argany, M., Ramirez-Alvarado, M.: Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans. J. Biol. Chem. 290(8), 4953–4965 (2015)PubMedCrossRefGoogle Scholar
  91. 91.
    Borysik, A.J., Morten, I.J., Radford, S.E., Hewitt, E.W.: Specific glycosaminoglycans promote unseeded amyloid formation from beta2-microglobulin under physiological conditions. Kidney Int. 72(2), 174–181 (2007)PubMedCrossRefGoogle Scholar
  92. 92.
    Yamaguchi, I., Suda, H., Tsuzuike, N., Seto, K., Seki, M., Yamaguchi, Y., Hasegawa, K., Takahashi, N., Yamamoto, S., Gejyo, F., Naiki, H.: Glycosaminoglycan and proteoglycan inhibit the depolymerization of beta2-microglobulin amyloid fibrils in vitro. Kidney Int. 64(3), 1080–1088 (2003)PubMedCrossRefGoogle Scholar
  93. 93.
    Relini, A., De Stefano, S., Torrassa, S., Cavalleri, O., Rolandi, R., Gliozzi, A., Giorgetti, S., Raimondi, S., Marchese, L., Verga, L., Rossi, A., Stoppini, M., Bellotti, V.: Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen. J. Biol. Chem. 283(8), 4912–4920 (2008)PubMedCrossRefGoogle Scholar
  94. 94.
    Suk, J.Y., Zhang, F., Balch, W.E., Linhardt, R.J., Kelly, J.W.: Heparin accelerates gelsolin amyloidogenesis. Biochemistry. 45(7), 2234–2242 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Goedert, M., Jakes, R., Spillantini, M.G., Hasegawa, M., Smith, M.J., Crowther, R.A.: Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature. 383(6600), 550–553 (1996)PubMedCrossRefGoogle Scholar
  96. 96.
    Hasegawa, M., Crowther, R.A., Jakes, R., Goedert, M.: Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J. Biol. Chem. 272(52), 33118–33124 (1997)PubMedCrossRefGoogle Scholar
  97. 97.
    McLaurin, J., Franklin, T., Zhang, X., Deng, J., Fraser, P.E.: Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur. J. Biochem. 266(3), 1101–1110 (1999)PubMedCrossRefGoogle Scholar
  98. 98.
    Castillo, G.M., Lukito, W., Wight, T.N., Snow, A.D.: The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J. Neurochem. 72(4), 1681–1687 (1999)PubMedCrossRefGoogle Scholar
  99. 99.
    Bravo, R., Arimon, M., Valle-Delgado, J.J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernandez-Busquets, X.: Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity. J. Biol. Chem. 283(47), 32471–32483 (2008)PubMedCrossRefGoogle Scholar
  100. 100.
    Cohlberg, J.A., Li, J., Uversky, V.N., Fink, A.L.: Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry. 41(5), 1502–1511 (2002)PubMedCrossRefGoogle Scholar
  101. 101.
    Supattapone, S.: Prion protein conversion in vitro. J. Mol. Med. (Berl). 82(6), 348–356 (2004)CrossRefGoogle Scholar
  102. 102.
    Motamedi-Shad, N., Monsellier, E., Chiti, F.: Amyloid formation by the model protein muscle acylphosphatase is accelerated by heparin and heparan sulphate through a scaffolding-based mechanism. J. Biochem. 146(6), 805–814 (2009)PubMedCrossRefGoogle Scholar
  103. 103.
    Motamedi-Shad, N., Monsellier, E., Torrassa, S., Relini, A., Chiti, F.: Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway. J. Biol. Chem. 284(43), 29921–29934 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Fraser, P.E., Nguyen, J.T., Chin, D.T., Kirschner, D.A.: Effects of sulfate ions on Alzheimer beta/A4 peptide assemblies: implications for amyloid fibril-proteoglycan interactions. J. Neurochem. 59(4), 1531–1540 (1992)PubMedCrossRefGoogle Scholar
  105. 105.
    Ellett, L.J., Coleman, B.M., Shambrook, M.C., Johanssen, V.A., Collins, S.J., Masters, C.L., Hill, A.F., Lawson, V.A.: Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. Glycobiology. 25(7), 745–755 (2015)PubMedCrossRefGoogle Scholar
  106. 106.
    Valle-Delgado, J.J., Alfonso-Prieto, M., de Groot, N.S., Ventura, S., Samitier, J., Rovira, C., Fernandez-Busquets, X.: Modulation of Abeta42 fibrillogenesis by glycosaminoglycan structure. FASEB J. 24(11), 4250–4261 (2010)PubMedCrossRefGoogle Scholar
  107. 107.
    Ren, R., Hong, Z., Gong, H., Laporte, K., Skinner, M., Seldin, D.C., Costello, C.E., Connors, L.H., Trinkaus-Randall, V.: Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J. Biol. Chem. 285(48), 37672–37682 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lawson, V.A., Lumicisi, B., Welton, J., Machalek, D., Gouramanis, K., Klemm, H.M., Stewart, J.D., Masters, C.L., Hoke, D.E., Collins, S.J., Hill, A.F.: Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein. PLoS One. 5(8), e12351 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    McLaurin, J., Fraser, P.E.: Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide-glycosaminoglycan interactions. Eur. J. Biochem. 267(21), 6353–6361 (2000)PubMedCrossRefGoogle Scholar
  110. 110.
    Lindahl, U., Kjellen, L.: Pathophysiology of heparan sulphate: many diseases, few drugs. J. Intern. Med. 273(6), 555–571 (2013)PubMedCrossRefGoogle Scholar
  111. 111.
    Dudas, B., Semeniken, K.: Glycosaminoglycans and neuroprotection. Handb. Exp. Pharmacol. (207), 325–343 (2012)Google Scholar
  112. 112.
    Kisilevsky, R., Lemieux, L.J., Fraser, P.E., Kong, X., Hultin, P.G., Szarek, W.A.: Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat. Med. 1(2), 143–148 (1995)PubMedCrossRefGoogle Scholar
  113. 113.
    Bergamaschini, L., Rossi, E., Storini, C., Pizzimenti, S., Distaso, M., Perego, C., De Luigi, A., Vergani, C., De Simoni, M.G.: Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer's disease. J. Neurosci. 24(17), 4181–4186 (2004)PubMedCrossRefGoogle Scholar
  114. 114.
    Nishitsuji, K., Uchimura, K.: Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj. J. 34(4), 453–466 (2017)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryWakayama Medical UniversityWakayamaJapan
  2. 2.Department of Pathology and Laboratory Medicine, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan

Personalised recommendations