Advertisement

Glycoconjugate Journal

, Volume 35, Issue 3, pp 311–321 | Cite as

Towards automation of glycomic profiling of complex biological materials

  • Archana Shubhakar
  • Poh-Choo Pang
  • Daryl L. Fernandes
  • Anne Dell
  • Daniel I. R. Spencer
  • Stuart M. Haslam
Original Article

Abstract

Glycosylation is considered one of the most complex and structurally diverse post-translational modifications of proteins. Glycans play important roles in many biological processes such as protein folding, regulation of protein stability, solubility and serum half-life. One of the ways to study glycosylation is systematic structural characterizations of protein glycosylation utilizing glycomics methodology based around mass spectrometry (MS). The most prevalent bottleneck stages for glycomic analyses is laborious sample preparation steps. Therefore, in this study, we aim to improve sample preparations by automation. We recently demonstrated the successful application of an automated high-throughput (HT), glycan permethylation protocol based on 96-well microplates, in the analysis of purified glycoproteins. Therefore, we wanted to test if these developed HT methodologies could be applied to more complex biological starting materials. Our automated 96-well-plate based permethylation method showed very comparable results with established glycomic methodology. Very similar glycomic profiles were obtained for complex glycoprotein/protein mixtures derived from heterogeneous mouse tissues. Automated N-glycan release, enrichment and automated permethylation of samples proved to be convenient, robust and reliable. Therefore we conclude that these automated procedures are a step forward towards the development of a fully automated, fast and reliable glycomic profiling system for analysis of complex biological materials.

Keywords

N- and O-glycosylation Mouse tissues Permethylation MALDI-TOF-MS Automation Glycan characterisation 

Notes

Acknowledgements

This work was supported by a Business Innovation Voucher funded by IBCarb and Biotechnology and Biological Sciences Research Council (BBSRC) and by the European Union Seventh Framework Programmes HighGlycan (Grant Number 278535). Support was also provided by grants BB/K016164/1 and BB/F008309/1 from the Biotechnology and Biological Sciences Research Council. The authors are also grateful to Manfred Wuhrer for critical reading of this manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare the following competing financial interest(s): Ludger Ltd. is a commercial bioscience company specializing in development and validation of glycoprofiling technology. The following authors, A.S., D.I.R.S. and D.L.F. are employed by Ludger Ltd. Products from Ludger were used in this research.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Supplementary material

10719_2018_9825_MOESM1_ESM.pdf (764 kb)
ESM 1 (PDF 763 kb)

References

  1. 1.
    Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N., Dwek, R.A.: Emerging principles for the therapeutic exploitation of glycosylation. Science. 343, 1235681 (2014).  https://doi.org/10.1126/science.1235681 CrossRefPubMedGoogle Scholar
  2. 2.
    Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).  https://doi.org/10.1038/nrd1751
  3. 3.
    Adamczyk, B., Tharmalingam, T., Rudd, P.M.: Glycans as cancer biomarkers. Biochimica et Biophysica Acta - General Subjects 1820:1347–1353 (2012).  https://doi.org/10.1016/j.bbagen.2011.12.001
  4. 4.
    Varki, A.: Biological roles of glycans. Glycobiology. 27, 3–49 (2017)CrossRefPubMedGoogle Scholar
  5. 5.
    North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19, 498–506 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morelle, W., Michalski, J.-C.: Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2, 1585–1602 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    Dotz, V., Haselberg, R., Shubhakar, A., Kozak, R.P., Falck, D., Rombouts, Y., Reusch, D., Somsen, G.W., Fernandes, D.L., Wuhrer, M.: Mass spectrometry for glycosylation analysis of biopharmaceuticals. TrAC, Trends Anal. Chem. 73, 1–9 (2015)CrossRefGoogle Scholar
  8. 8.
    Ciucanu, I.: Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry. Anal. Chim. Acta. 576, 147–155 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    Dell, A.: Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol. 193, 647–660 (1990)CrossRefPubMedGoogle Scholar
  10. 10.
    Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., Kawasaki, N., Khoo, K.-H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M.V., Packer, N.H., Perreault, H., Peter-Katalinic, J., Pohlentz, G., Reinhold, V.N., Rudd, P.M., Suzuki, A., Taniguchi, N.: Supplemental data: comparison of the methods for profiling glycoprotein glycans--HUPO human disease Glycomics/proteome initiative multi-institutional study. Glycobiology. 17, 411–422 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Wada, Y., Dell, A., Haslam, S.M., Rangè Re Tissot, B., Canis, K.V., Azadi, P., Bä Ckströ, M., Costello, C.E., Hansson, G.C., Hiki, Y., Ishihara, M., Ito, H., Kakehi, K., Karlsson, N., Hayes, C.E., Kato, K., Kawasaki, N., Khoo, K.-H., Kobayashi, K., Kolarich, D., Kondo, A., Lebrilla, C., Nakano, M., Narimatsu, H., Novak, J., Novotny, M.V., Ohno, E., Packer, N.H., Palaima, E., Renfrow, M.B., Tajiri, M., Thomsson, K.A., Yagi, H., Yu, S.-Y., Taniguchi, N.: Comparison of methods for profiling O-glycosylation. Mol. Cell. Proteomics. 9, 719–727 (2010)CrossRefPubMedGoogle Scholar
  12. 12.
    Lei, M., Mechref, Y., Novotny, M.V.: Structural analysis of sulfated glycans by sequential double-Permethylation using methyl iodide and Deuteromethyl iodide. J. Am. Soc. Mass Spectrom. 20, 1660–1671 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    Stalnaker, S.H., Aoki, K., Lim, J.M., Porterfield, M., Liu, M., Satz, J.S., Buskirk, S., Xiong, Y., Zhang, P., Campbell, K.P., Hu, H., Live, D., Tiemeyer, M., Wells, L.: Glycomic analyses of mouse models of congenital muscular dystrophy. J. Biol. Chem. 286, 21180–21190 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Macauley, M.S., Crocker, P.R., Paulson, J.C.: Siglec regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).  https://doi.org/10.1038/nri3737
  15. 15.
    North, S.J., Jang-Lee, J., Harrison, R., Canis, K., Ismail, M.N., Trollope, A., Antonopoulos, A., Pang, P.-C., Grassi, P., Al-Chalabi, S., Etienne, A.T., Dell, A., Haslam, S.M.: Mass spectrometric analysis of mutant mice. Methods Enzymol. 478, 27–77 (2010).  https://doi.org/10.1016/S0076-6879(10)78002-2
  16. 16.
    Shubhakar, A., Kozak, R.P., Reiding, K.R., Royle, L., Spencer, D.I.R., Fernandes, D.L., Wuhrer, M.: Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal. Chem. 88, 8562–8569 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    Bern, M., Brito, A.E., Pang, P.-C., Rekhi, A., Dell, A., Haslam, S.M.: Polylactosaminoglycan glycomics: enhancing the detection of high-molecular-weight N-glycans in matrix-assisted laser desorption ionization time-of-flight profiles by matched filtering. Mol. Cell. Proteomics. 12, 996–1004 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kolarich, D., Rapp, E., Struwe, W.B., Haslam, S.M., Zaia, J., McBride, R., Agravat, S., Campbell, M.P., Kato, M., Ranzingera, R., Kettnerb, C., York, W.S.: The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Mol. Cell. Proteomics. 12, 991–995 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 1650–1659 (2008).  https://doi.org/10.1021/pr7008252
  20. 20.
    Kang, P., Mechref, Y., Novotny, M.V.: High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22, 721–734 (2008).  https://doi.org/10.1002/rcm.3395
  21. 21.
    Cheng, P.F., Snovida, S., Ho, M.Y., Cheng, C.W., Wu, A.M., Khoo, K.H.: Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Anal. Bioanal. Chem. 405, 6683–6695 (2013)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Archana Shubhakar
    • 1
    • 2
  • Poh-Choo Pang
    • 3
  • Daryl L. Fernandes
    • 1
  • Anne Dell
    • 3
  • Daniel I. R. Spencer
    • 1
  • Stuart M. Haslam
    • 3
  1. 1.Ludger LtdAbingdonUnited Kingdom
  2. 2.Division of BioAnalytical ChemistryVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Life SciencesImperial College LondonLondonUK

Personalised recommendations