Advertisement

Glycoconjugate Journal

, Volume 35, Issue 3, pp 287–297 | Cite as

Lewis-antigen-containing ICAM-2/3 on Jurkat leukemia cells interact with DC-SIGN to regulate DC functions

  • Xin Jin
  • Qingpan Bu
  • Yingying Zou
  • Yunpeng Feng
  • Min WeiEmail author
Original Article

Abstract

Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is an important C-type lectin and plays a critical role in the recognition of pathogens and self-antigens. It has recently been shown that DC-SIGN directly interacts with acute T lymphoblastic leukemia cells. However, the mechanism regulating DC-SIGN-dependent DC association as well as related functions is still elusive. Here we showed that DC-SIGN preferentially bound to a set of malignant T lymphocytes, including Jurkat, CCRF-HSB2 and CCRF-CEM. ICAM-2/3 on Jurkat cells appeared to be the responsible ligands and the block of ICAM-2/3 dramatically impaired DC-SIGN association. We also found that ICAM-2/3 bear a considerable amount of Lewis X, Lewis Y and Lewis A residues, which are important for DC-SIGN recognition. Furthermore, transcriptome analysis revealed an upregulation of fucosyltransferase 4 (FUT4) in Jurkat cells and downregulating FUT4 limited DC-SIGN binding, indicating a previously unappreciated role of FUT4 in the control of Lewis antigens on malignant T lymphocytes. In addition, the presence of Jurkat cells impaired DC maturation and the block of DC-SIGN improved Jurkat cell-mediated effects on DC function and T cell differentiation. Together, we provide evidence that DC-SIGN orients DC association with acute T lymphoblastic leukemia cells and orchestrates DC functions.

Keywords

DC-SIGN ICAM-2 ICAM-3 Lewis antigens FUT4 Immune response 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31270916, 31170769), and the Jilin Provincial Science & Technology Department Program (201205005), and the Natural Science Foundation of Changchun Normal University (2016001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Janeway, C.A., Medzhitov, R.: Innate Immune Recognition. Annu. Rev. Immunol. 20(1), 197–216 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Lanzavecchia, A., Sallusto, F.: Regulation of T cell immunity by dendritic cells. Cell. 106(3), 263–266 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    van Vliet, S.J., García-Vallejo, J.J., van Kooyk, Y.: Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol. Cell Biol. 86(7), 580–587 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.J., van Kooyk, Y., Figdor, C.G.: Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 100(5), 575–585 (2000)CrossRefPubMedGoogle Scholar
  5. 5.
    Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R., Figdor, C.G., van Kooyk, Y.: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 100(5), 587–597 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    Geijtenbeek, T.B., Krooshoop, D.J., Bleijs, D.A., van Vliet, S.J., van Duijnhoven, G.C., Grabovsky, V., Alon, R., Figdor, C.G., van Kooyk, Y.: DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1(4), 353–357 (2000)CrossRefPubMedGoogle Scholar
  7. 7.
    Nonaka, M., Ma, B.Y., Murai, R., Nakamura, N., Baba, M., Kawasaki, N., Hodohara, K., Asano, S., Kawasaki, T.: Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis Glycans impair the function and differentiation of monocyte-derived dendritic cells. J. Immunol. 180(5), 3347–3356 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Geijtenbeek, T.B.H., van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C.M.J.E., Appelmelk, B., van Kooyk, Y.: Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197(1), 7–17 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van Liempt, E., Bank, C.M.C, Mehta, P., Garciá-Vallejo, J.J., Kawar, Z.S., Geyer, R., Alvarez, R.A., Cummings, R.D., van Kooyk, Y., van Die, I.: Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Lett. 580(26), 6123–6131 (2006)Google Scholar
  10. 10.
    Garcia-Vallejo, J.J., van Liempt, E., da Costa Martins, P., Beckers, C., van het Hof, B., Gringhuis, S.I., Zwaginga, J.J., van Dijk, W., Geijtenbeek, T.B., van Kooyk, Y., van Die, I.: DC-SIGN mediates adhesion and rolling of dendritic cells on primary human umbilical vein endothelial cells through LewisY antigen expressed on ICAM-2. Mol. Immunol. 45(8), 2359–2369 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    Bogoevska, V., Nollau, P., Lucka, L., Grunow, D., Klampe, B., Uotila, L.M., Samsen, A., Gahmberg, C.G., Wagener, C.: DC-SIGN binds ICAM-3 isolated from peripheral human leukocytes through Lewis x residues. Glycobiology. 17(3), 324–333 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Nonaka, M., Ma, B.Y., Imaeda, H., Kawabe, K., Kawasaki, N., Hodohara, K., Kawasaki, N., Andoh, A., Fujiyama, Y., Kawasaki, T.: Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) recognizes a novel ligand, mac-2-binding protein, characteristically expressed on human colorectal carcinomas. J. Biol. Chem. 286(25), 22403–22413 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    van Gisbergen, K.P.J.M., Aarnoudse, C.A., Meijer, G.A., Geijtenbeek, T.B.H., van Kooyk, Y.: Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal Cancer cells through dendritic cell–specific intercellular adhesion Molecule-3–grabbing nonintegrin. Cancer Res. 65(13), 5935–5944 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    van Gisbergen, K.P.J.M., Ludwig, I.S., Geijtenbeek, T.B.H., van Kooyk, Y.: Interactions of DC-SIGN with mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett. 579(27), 6159–6168 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    van Gisbergen, K.P.J.M., Sanchez-Hernandez, M., Geijtenbeek, T.B.H., van Kooyk, Y.: Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between mac-1 and DC-SIGN. J. Exp. Med. 201(8), 1281–1292 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gijzen, K., Raymakers, R.A.P., Broers, K.M., Figdor, C.G., Torensma, R.: Interaction of acute lymphopblastic leukemia cells with C-type lectins DC-SIGN and L-SIGN. Exp. Hematol. 36(7), 860–870 (2008)CrossRefPubMedGoogle Scholar
  17. 17.
    Becker, D.J., Lowe, J.B.: Fucose: biosynthesis and biological function in mammals. Glycobiology. 13(7), 41R–53R (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Soejima, M., Koda, Y.: Molecular mechanisms of Lewis antigen expression. Legal Med. 7(4), 266–269 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    Azuma, Y., Ito, M., Taniguchi, A., Matsumoto, K.: Expression of cell surface Lewis X and Y antigens and FUT4 mRNA is increased in Jurkat cells undergoing apoptosis. Biochim. Biophys. Acta Gen. Subj. 1672(3), 157–163 (2004)CrossRefGoogle Scholar
  20. 20.
    de Vries, T., Knegtel, R.M., Holmes, E.H., Macher, B.A.: Fucosyltransferases: structure/function studies. Glycobiology. 11(10), 119R–128R (2001)CrossRefPubMedGoogle Scholar
  21. 21.
    Moehler, T.M., Sauer, S., Witzel, M., Andrulis, M., Garcia-Vallejo, J.J., Grobholz, R., Willhauck-Fleckenstein, M., Greiner, A., Goldschmidt, H., Schwartz-Albiez, R.: Involvement of α 1-2-fucosyltransferase I (FUT1) and surface-expressed lewisy(CD174) in first endothelial cell-cell contacts during angiogenesis. J. Cell. Physiol. 215(1), 27–36 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Tu, Z., Lin, Y.-N., Lin, C.-H.: Development of fucosyltransferase and fucosidase inhibitors. Chem. Soc. Rev. 42(10), 4459–4475 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    Gajewski, T.F., Schreiber, H., Fu, Y.X.: Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14(10), 1014–1022 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heath, W.R., Carbone, F.R.: Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    Zong, J., Keskinov, A.A., Shurin, G.V., Shurin, M.R.: Tumor-derived factors modulating dendritic cell function. Cancer Immunol. Immunother. 65(7), 821–833 (2016)CrossRefPubMedGoogle Scholar
  26. 26.
    Mantovani, A., Sica, A.: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22(2), 231–237 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    Joffre, O.P., Segura, E., Savina, A., Amigorena, S.: Cross-presentation by dendritic cells. Nat Rev Immunol. 12(8), 557–569 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    Banchereau, J., Pascual, V., Palucka, A.K.: Autoimmunity through cytokine-induced dendritic cell activation. Immunity. 20(5), 539–550 (2004)CrossRefPubMedGoogle Scholar
  29. 29.
    Maldonado-Lopez, R., Maliszewski, C., Urbain, J., Moser, M.: Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(−) dendritic cells to prime Th1/Th2 cells in vivo. J. Immunol. 167(8), 4345–4350 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    De Smedt, T., Van Mechelen, M., De Becker, G., Urbain, J., Leo, O., Moser, M.: Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27(5), 1229–1235 (1997)CrossRefPubMedGoogle Scholar
  31. 31.
    Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., Farnarier, C.: IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24(1), 25–29 (2003)CrossRefPubMedGoogle Scholar
  32. 32.
    Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J., Enk, A.H.: Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159(10), 4772–4780 (1997)PubMedGoogle Scholar
  33. 33.
    Saraiva, M., O'Garra, A.: The regulation of IL-10 production by immune cells. Nat Rev Immunol. 10(3), 170–181 (2010)CrossRefPubMedGoogle Scholar
  34. 34.
    Kapsenberg, M.L.: Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 3(12), 984–993 (2003)CrossRefPubMedGoogle Scholar
  35. 35.
    Sabat, R., Grütz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K., Geginat, J.: Biology of interleukin-10. Cytokine Growth Factor Rev. 21(5), 331–344 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jolly, C., Mitar, I., Sattentau, Q.J.: Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced Virological synapse formation between T cells. J. Virol. 81(24), 13916–13921 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Molica, S., Dattilo, A., Mannella, A., Levato, D.: Intercellular adhesion molecules (ICAMs) 2 and 3 are frequently expressed in B cell chronic lymphocytic leukemia. Leukemia. 10(5), 907–908 (1996)PubMedGoogle Scholar
  38. 38.
    Naarding, M.A.: Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. J. Clin. Investig. 115(11), 3256–3264 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    López-Ferrer, A., de Bolós, C., Barranco, C., Garrido, M., Isern, J., Carlstedt, I., Reis, C.A., Torrado, J., Real, F.X.: Role of fucosyltransferases in the association between apomucin and Lewis antigen expression in normal and malignant gastric epithelium. Gut. 47, 349–356 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Petretti, T., Schulze, B., Schlag, P.M., Kemmner, W.: Altered mRNA expression of glycosyltransferases in human gastric carcinomas. Biochim. Biophys. Acta. 1428(2–3), 209–218 (1999)CrossRefPubMedGoogle Scholar
  41. 41.
    Petretti, T., Kemmner, W., Schulze, B., Schlag, P.M.: Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut. 46(3), 359–366 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhang, Z., Sun, P., Liu, J., Fu, L., Yan, J., Liu, Y., Yu, L., Wang, X., Yan, Q.: Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1783(2), 287–296 (2008)CrossRefGoogle Scholar
  43. 43.
    Yan, X., Lin, Y., Liu, S., Aziz, F., Yan, Q.: Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed Pharmacother. 70, 299–304 (2015)CrossRefPubMedGoogle Scholar
  44. 44.
    Yang, X., Liu, S., Yan, Q.: Role of fucosyltransferase IV in epithelial-mesenchymal transition in breast cancer cells. Cell Death Dis. 4, e735 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yang, X., Wang, J., Liu, S., Yan, Q.: HSF1 and Sp1 regulate FUT4 gene expression and cell proliferation in breast cancer cells. J. Cell. Biochem. 115(1), 168–178 (2014)CrossRefPubMedGoogle Scholar
  46. 46.
    Azuma, Y., Kurusu, Y., Sato, H., Higai, K., Matsumoto, K.: Increased expression of Lewis X and Y antigens on the cell surface and FUT 4 mRNA during granzyme B-induced Jurkat cell apoptosis. Biol. Pharm. Bull. 30(4), 655–660 (2007)CrossRefPubMedGoogle Scholar
  47. 47.
    Gottfried, E., Kreutz, M., Mackensen, A.: Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev. 19(1), 65–77 (2008)CrossRefPubMedGoogle Scholar
  48. 48.
    Kwon, D.S., Gregorio, G., Bitton, N., Hendrickson, W.A., Littman, D.R.: DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity. 16(1), 135–144 (2002)CrossRefPubMedGoogle Scholar
  49. 49.
    Hiraoka, N., Yamazaki-Itoh, R., Ino, Y., Mizuguchi, Y., Yamada, T., Hirohashi, S., Kanai, Y.: CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology. 140(1), 310–321 (2011)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xin Jin
    • 1
  • Qingpan Bu
    • 2
  • Yingying Zou
    • 1
  • Yunpeng Feng
    • 1
  • Min Wei
    • 1
    Email author
  1. 1.Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityJilinPeople’s Republic of China
  2. 2.School of Life SciencesChangchun Normal UniversityJilinPeople’s Republic of China

Personalised recommendations