Advertisement

Glycoconjugate Journal

, Volume 35, Issue 1, pp 15–29 | Cite as

Building a PGC-LC-MS N-glycan retention library and elution mapping resource

  • Jodie L. Abrahams
  • Matthew P. Campbell
  • Nicolle H. PackerEmail author
Original Article

Abstract

Porous graphitised carbon-liquid chromatography (PGC-LC) has been proven to be a powerful technique for the analysis and characterisation of complex mixtures of isomeric and isobaric glycan structures. Here we evaluate the elution behaviour of N-glycans on PGC-LC and thereby provide the potential of using chromatographic separation properties, together with mass spectrometry (MS) fragmentation, to determine glycan structure assignments more easily. We used previously reported N-glycan structures released from the purified glycoproteins Immunoglobulin G (IgG), Immunoglobulin A (IgA), lactoferrin, α1-acid glycoprotein, Ribonuclease B (RNase B), fetuin and ovalbumin to profile their behaviour on capillary PGC-LC-MS. Over 100 glycan structures were determined by MS/MS, and together with targeted exoglycosidase digestions, created a N-glycan PGC retention library covering a full spectrum of biologically significant N-glycans from pauci mannose to sialylated tetra-antennary classes. The resultant PGC retention library (http://www.glycostore.org/showPgc) incorporates retention times and supporting fragmentation spectra including exoglycosidase digestion products, and provides detailed knowledge on the elution properties of N-glycans by PGC-LC. Consequently, this platform should serve as a valuable resource for facilitating the detailed analysis of the glycosylation of both purified recombinant, and complex mixtures of, glycoproteins using established workflows.

Keywords

N-glycan Glycoprotein Porous graphitised carbon Liquid chromatography Mass spectrometry 

Notes

Acknowledgements

This study was supported by the Macquarie University Research Excellence Scheme postgraduate scholarship, the Northern Translational Cancer Research Unit through a Cancer Institute NSW competitive student grant, and the National eResearch Collaboration Tools and Resources project (NeCTAR RT016). This research project was facilitated by access to the Australian Proteomics Analysis Facility (APAF) established under the Australian Government’s NCRIS program. We would like to acknowledge Dr. Sophie Zhao, Dr. Ian Walsh and Prof. Pauline Rudd (Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore) for supporting the development of GlycoStore.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2017_9793_MOESM1_ESM.pdf (476 kb)
ESM 1 (PDF 475 kb)

References

  1. 1.
    Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96(2), 683–720 (1996)CrossRefPubMedGoogle Scholar
  2. 2.
    Sperandio, M., Gleissner, C.A., Ley, K.: Glycosylation in immune cell trafficking. Immunol. Rev. 230(1), 97–113 (2009).  https://doi.org/10.1111/j.1600-065X.2009.00795.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wormald, M.R., Dwek, R.A.: Glycoproteins: glycan presentation and protein-fold stability. Structure. 7(7), R155–R160 (1999)CrossRefPubMedGoogle Scholar
  4. 4.
    Christiansen, M.N., Chik, J., Lee, L., Anugraham, M., Abrahams, J.L., Packer, N.H.: Cell surface protein glycosylation in cancer. Proteomics. 14(4–5), 525–546 (2014).  https://doi.org/10.1002/pmic.201300387 CrossRefPubMedGoogle Scholar
  5. 5.
    Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N., Dwek, R.A.: Emerging principles for the therapeutic exploitation of glycosylation. Science. 343(6166), 1235681 (2014).  https://doi.org/10.1126/science.1235681 CrossRefPubMedGoogle Scholar
  6. 6.
    Freeze, H.H., Chong, J.X., Bamshad, M.J., Ng, B.G.: Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94(2), 161–175 (2014).  https://doi.org/10.1016/j.ajhg.2013.10.024 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mkhikian, H., Grigorian, A., Li, C.F., Chen, H.L., Newton, B., Zhou, R.W., Beeton, C., Torossian, S., Tatarian, G.G., Lee, S.U., Lau, K., Walker, E., Siminovitch, K.A., Chandy, K.G., Yu, Z., Dennis, J.W., Demetriou, M.: Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat. Commun. 2, 334 (2011).  https://doi.org/10.1038/ncomms1333 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ohtsubo, K., Marth, J.: Glycosylation in cellular mechanisms of health and disease. Cell. 126(5), 855–867 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    Stowell, S.R., Ju, T., Cummings, R.D.: Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015).  https://doi.org/10.1146/annurev-pathol-012414-040438 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alley Jr., W.R., Novotny, M.V.: Structural glycomic analyses at high sensitivity: a decade of progress. Annu. Rev. Anal. Chem. 6, 237–265 (2013).  https://doi.org/10.1146/annurev-anchem-062012-092609 CrossRefGoogle Scholar
  11. 11.
    Kailemia, M.J., Ruhaak, L.R., Lebrilla, C.B., Amster, I.J.: Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86(1), 196–212 (2014).  https://doi.org/10.1021/ac403969n CrossRefPubMedGoogle Scholar
  12. 12.
    Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Marino, K., Correale, J., Rabinovich, G.A.: Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev. 25(3), 247–255 (2014).  https://doi.org/10.1016/j.cytogfr.2014.02.003 CrossRefPubMedGoogle Scholar
  13. 13.
    Miura, Y., Endo, T.: Glycomics and glycoproteomics focused on aging and age-related diseases - Glycans as a potential biomarker for physiological alterations. Biochim. Biophys. Acta. 1860(8), 1608–1614 (2016).  https://doi.org/10.1016/j.bbagen.2016.01.013 CrossRefPubMedGoogle Scholar
  14. 14.
    Mechref, Y., Hu, Y., Desantos-Garcia, J.L., Hussein, A., Tang, H.: Quantitative glycomics strategies. Mol Cell Proteomics. 12(4), 874–884 (2013).  https://doi.org/10.1074/mcp.R112.026310 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moh, E.S., Thaysen-Andersen, M., Packer, N.H.: Relative versus absolute quantitation in disease glycomics. Proteomics Clin Appl. (2015).  https://doi.org/10.1002/prca.201400184
  16. 16.
    Reinhold, V., Zhang, H., Hanneman, A., Ashline, D.: Toward a platform for comprehensive glycan sequencing. Mol. Cell. Proteomics. 12(4), 866–873 (2013).  https://doi.org/10.1074/mcp.R112.026823 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Reusch, D., Haberger, M., Selman, M.H., Bulau, P., Deelder, A.M., Wuhrer, M., Engler, N.: High-throughput work flow for IgG fc-glycosylation analysis of biotechnological samples. Anal. Biochem. 432(2), 82–89 (2013).  https://doi.org/10.1016/j.ab.2012.09.032 CrossRefPubMedGoogle Scholar
  18. 18.
    Sahoo, S., Thomas, C., Sheth, A., Henson, C., York, W.: GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydr. Res. 340(18), 2802–2807 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    Turiak, L., Shao, C., Meng, L., Khatri, K., Leymarie, N., Wang, Q., Pantazopoulos, H., Leon, D.R., Zaia, J.: Workflow for combined proteomics and glycomics profiling from histological tissues. Anal. Chem. 86(19), 9670–9678 (2014).  https://doi.org/10.1021/ac5022216 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19(5), 498–506 (2009).  https://doi.org/10.1016/j.sbi.2009.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Thaysen-Andersen, M., Packer, N.H., Schulz, B.L.: Maturing Glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol. Cell. Proteomics. 15(6), 1773–1790 (2016).  https://doi.org/10.1074/mcp.O115.057638 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wuhrer, M.: Glycomics using mass spectrometry. Glycoconj. J. 30(1), 11–22 (2013).  https://doi.org/10.1007/s10719-012-9376-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Zaia, J.: Mass spectrometry and glycomics. OMICS. 14(4), 401–418 (2010).  https://doi.org/10.1089/omi.2009.0146 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mauko, L., Lacher, N.A., Pelzing, M., Nordborg, A., Haddad, P.R., Hilder, E.F.: Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 911, 93–104 (2012).  https://doi.org/10.1016/j.jchromb.2012.10.043 CrossRefGoogle Scholar
  25. 25.
    Michael, C., Rizzi, A.M.: Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase. J. Chromatogr. A. 1383, 88–95 (2015).  https://doi.org/10.1016/j.chroma.2015.01.028 CrossRefPubMedGoogle Scholar
  26. 26.
    Ruhaak, L.R., Deelder, A.M., Wuhrer, M.: Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 394(1), 163–174 (2009).  https://doi.org/10.1007/s00216-009-2664-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Saldova, R., Asadi Shehni, A., Haakensen, V.D., Steinfeld, I., Hilliard, M., Kifer, I., Helland, A., Yakhini, Z., Borresen-Dale, A.L., Rudd, P.M.: Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J. Proteome Res. 13(5), 2314–2327 (2014).  https://doi.org/10.1021/pr401092y CrossRefPubMedGoogle Scholar
  28. 28.
    Higel, F., Demelbauer, U., Seidl, A., Friess, W., Sorgel, F.: Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal. Bioanal. Chem. 405(8), 2481–2493 (2013).  https://doi.org/10.1007/s00216-012-6690-3 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Melmer, M., Stangler, T., Premstaller, A., Lindner, W.: Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J. Chromatogr. A. 1218(1), 118–123 (2011).  https://doi.org/10.1016/j.chroma.2010.10.122 CrossRefPubMedGoogle Scholar
  30. 30.
    Prater, B.D., Connelly, H.M., Qin, Q., Cockrill, S.L.: High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal. Biochem. 385(1), 69–79 (2009).  https://doi.org/10.1016/j.ab.2008.10.023 CrossRefPubMedGoogle Scholar
  31. 31.
    Adamczyk, B., Tharmalingam-Jaikaran, T., Schomberg, M., Szekrenyes, A., Kelly, R.M., Karlsson, N.G., Guttman, A., Rudd, P.M.: Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr. Res. 389, 174–185 (2014).  https://doi.org/10.1016/j.carres.2014.01.018 CrossRefPubMedGoogle Scholar
  32. 32.
    Anugraham, M., Jacob, F., Nixdorf, S., Everest-Dass, A.V., Heinzelmann-Schwarz, V., Packer, N.H.: Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol. Cell. Proteomics. 13(9), 2213–2232 (2014).  https://doi.org/10.1074/mcp.M113.037085 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Everest-Dass, A.V., Abrahams, J.L., Kolarich, D., Packer, N.H., Campbell, M.P.: Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J. Am. Soc. Mass Spectrom. 24(6), 895–906 (2013).  https://doi.org/10.1007/s13361-013-0610-4 CrossRefPubMedGoogle Scholar
  34. 34.
    Stavenhagen, K., Kolarich, D., Wuhrer, M.: Clinical glycomics employing graphitized carbon liquid chromatography–mass spectrometry. Chromatographia, 1–14. (2014).  https://doi.org/10.1007/s10337-014-2813-7
  35. 35.
    Abrahams, J.L., Packer, N.H., Campbell, M.P.: Relative quantitation of multi-antennary N-glycan classes: combining PGC-LC-ESI-MS with exoglycosidase digestion. Analyst. 140(16), 5444–5449 (2015).  https://doi.org/10.1039/c5an00691k CrossRefPubMedGoogle Scholar
  36. 36.
    Kolarich, D., Windwarder, M., Alagesan, K., Altmann, F.: Isomer-specific analysis of released N-Glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol. Biol. 1321, 427–435 (2015).  https://doi.org/10.1007/978-1-4939-2760-9_29 CrossRefPubMedGoogle Scholar
  37. 37.
    Nakano, M., Saldanha, R., Gobel, A., Kavallaris, M., Packer, N.H.: Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol Cell Proteomics. 10(11), M111.009001 (2011).  https://doi.org/10.1074/mcp.M111.009001 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pabst, M., Altmann, F.: Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal. Chem. 80(19), 7534–7542 (2008).  https://doi.org/10.1021/ac801024r CrossRefPubMedGoogle Scholar
  39. 39.
    Aldredge, D., An, H.J., Tang, N., Waddell, K., Lebrilla, C.B.: Annotation of a serum N-glycan library for rapid identification of structures. J. Proteome Res. 11(3), 1958–1968 (2012).  https://doi.org/10.1021/pr2011439 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hua, S., Jeong, H.N., Dimapasoc, L.M., Kang, I., Han, C., Choi, J.S., Lebrilla, C.B., An, H.J.: Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal. Chem. 85(9), 4636–4643 (2013).  https://doi.org/10.1021/ac400195h CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jensen, P.H., Karlsson, N.G., Kolarich, D., Packer, N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012).  https://doi.org/10.1038/nprot.2012.063 CrossRefPubMedGoogle Scholar
  42. 42.
    Royle, L., Campbell, M.P., Radcliffe, C.M., White, D.M., Harvey, D.J., Abrahams, J.L., Kim, Y.G., Henry, G.W., Shadick, N.A., Weinblatt, M.E., Lee, D.M., Rudd, P.M., Dwek, R.A.: HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376(1), 1–12 (2008).  https://doi.org/10.1016/j.ab.2007.12.012 CrossRefPubMedGoogle Scholar
  43. 43.
    Royle, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M.: Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. Methods Mol. Biol. 347, 125–143 (2006).  https://doi.org/10.1385/1-59745-167-3:125 PubMedGoogle Scholar
  44. 44.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16(5), 631–646 (2005).  https://doi.org/10.1016/j.jasms.2005.01.005 CrossRefPubMedGoogle Scholar
  45. 45.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16(5), 647–659 (2005).  https://doi.org/10.1016/j.jasms.2005.01.006 CrossRefPubMedGoogle Scholar
  46. 46.
    Harvey, D.J., Royle, L., Radcliffe, C.M., Rudd, P.M., Dwek, R.A.: Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal. Biochem. 376(1), 44–60 (2008).  https://doi.org/10.1016/j.ab.2008.01.025 CrossRefPubMedGoogle Scholar
  47. 47.
    Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79(13), 5051–5057 (2007).  https://doi.org/10.1021/ac070363i CrossRefPubMedGoogle Scholar
  48. 48.
    Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R., Altmann, F.: Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics. 8(14), 2858–2871 (2008).  https://doi.org/10.1002/pmic.200700968 CrossRefPubMedGoogle Scholar
  49. 49.
    Huang, C.-C., Mayer, H.E., Montgomery, R.: Microheterogeneity and paucidispersity of glycoproteins. Carbohydr. Res. 13(1), 127–137 (1970).  https://doi.org/10.1016/S0008-6215(00)84902-2 CrossRefGoogle Scholar
  50. 50.
    Tai, T., Yamashita, K., Ogata-Arakawa, M., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., Kobata, A.: Structural studies of two ovalbumin glycopeptides in relation to the endo-beta-N-acetylglucosaminidase specificity. J. Biol. Chem. 250(21), 8569–8575 (1975)PubMedGoogle Scholar
  51. 51.
    Yamashita, K., Tachibana, Y., Kobata, A.: The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 253(11), 3862–3869 (1978)PubMedGoogle Scholar
  52. 52.
    Yoshima, H., Matsumoto, A., Mizuochi, T., Kawasaki, T., Kobata, A.: Comparative study of the carbohydrate moieties of rat and human plasma alpha 1-acid glycoproteins. J. Biol. Chem. 256(16), 8476–8484 (1981)PubMedGoogle Scholar
  53. 53.
    Ceccarini, C., Lorenzoni, P., Atkinson, P.H.: Fractionation of ovalbumin glycopeptide AC-C by high-pressure liquid chromatography. Determination of structure by 1H–NMR spectroscopy. Biochim Biophys Acta. 759(3), 214–221 (1983)CrossRefPubMedGoogle Scholar
  54. 54.
    Duffin, K.L., Welply, J.K., Huang, E., Henion, J.D.: Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal. Chem. 64(13), 1440–1448 (1992)CrossRefPubMedGoogle Scholar
  55. 55.
    Treuheit, M.J., Costello, C.E., Halsall, H.B.: Analysis of the five glycosylation sites of human alpha 1-acid glycoprotein. Biochem. J. 283(Pt 1), 105–112 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fu, D., Chen, L., O'Neill, R.A.: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr. Res. 261(2), 173–186 (1994)CrossRefPubMedGoogle Scholar
  57. 57.
    Kuster, B., Wheeler, S.F., Hunter, A.P., Dwek, R.A., Harvey, D.J.: Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250(1), 82–101 (1997).  https://doi.org/10.1006/abio.1997.2199 CrossRefPubMedGoogle Scholar
  58. 58.
    Mechref, Y., Novotny, M.V.: Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal. Chem. 70(3), 455–463 (1998)CrossRefPubMedGoogle Scholar
  59. 59.
    Harvey, D.J., Wing, D.R., Kuster, B., Wilson, I.B.: Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 11(6), 564–571 (2000).  https://doi.org/10.1016/S1044-0305(00)00122-7 CrossRefPubMedGoogle Scholar
  60. 60.
    Zhuang, Z., Starkey, J.A., Mechref, Y., Novotny, M.V., Jacobson, S.C.: Electrophoretic analysis of N-glycans on microfluidic devices. Anal. Chem. 79(18), 7170–7175 (2007).  https://doi.org/10.1021/ac071261v CrossRefPubMedGoogle Scholar
  61. 61.
    Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).  https://doi.org/10.1146/annurev.immunol.25.022106.141702 CrossRefPubMedGoogle Scholar
  62. 62.
    Kobata, A.: The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta. 1780(3), 472–478 (2008).  https://doi.org/10.1016/j.bbagen.2007.06.012 CrossRefPubMedGoogle Scholar
  63. 63.
    Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H., Reinhold, V.N.: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20(4), 539–556 (2009).  https://doi.org/10.1016/j.jasms.2008.11.012 CrossRefPubMedGoogle Scholar
  64. 64.
    Alley Jr., W.R., Mann, B.F., Novotny, M.V.: High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem. Rev. 113(4), 2668–2732 (2013).  https://doi.org/10.1021/cr3003714 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mahan, A.E., Tedesco, J., Dionne, K., Baruah, K., Cheng, H.D., De Jager, P.L., Barouch, D.H., Suscovich, T., Ackerman, M., Crispin, M., Alter, G.: A method for high-throughput, sensitive analysis of IgG fc and fab glycosylation by capillary electrophoresis. J. Immunol. Methods. 417, 34–44 (2015).  https://doi.org/10.1016/j.jim.2014.12.004 CrossRefPubMedGoogle Scholar
  66. 66.
    Harvey, D.J., Abrahams, J.L.: Fragmentation and ion mobility properties of negative ions from N-linked carbohydrates: part 7. Reduced glycans. Rapid Commun. Mass Spectrom. 30(5), 627–634 (2016).  https://doi.org/10.1002/rcm.7467 CrossRefPubMedGoogle Scholar
  67. 67.
    Sanda, M., Goldman, R.: Data independent analysis of IgG Glycoforms in samples of unfractionated human plasma. Anal. Chem. (2016).  https://doi.org/10.1021/acs.analchem.6b02554
  68. 68.
    Harvey, D.J., Scarff, C.A., Edgeworth, M., Pagel, K., Thalassinos, K., Struwe, W.B., Crispin, M., Scrivens, J.H.: Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans. J. Mass Spectrom. (2016).  https://doi.org/10.1002/jms.3828
  69. 69.
    Campbell, M., Royle, L., Radcliffe, C., Dwek, R., Rudd, P.: GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics. 24(9), 1214–1216 (2008)CrossRefPubMedGoogle Scholar
  70. 70.
    Guile, G.R., Rudd, P.M., Wing, D.R., Prime, S.B., Dwek, R.A.: A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240(2), 210–226 (1996).  https://doi.org/10.1006/abio.1996.0351 CrossRefPubMedGoogle Scholar
  71. 71.
    Koizumi, K.: High-performance liquid chromatographic separation of carbohydrates on graphitized carbon columns. J. Chromatogr. A. 720(1–2), 119–126 (1996)CrossRefPubMedGoogle Scholar
  72. 72.
    Melmer, M., Stangler, T., Premstaller, A., Lindner, W.: Solvent effects on the retention of oligosaccharides in porous graphitic carbon liquid chromatography. J. Chromatogr. A. 1217(39), 6092–6096 (2010).  https://doi.org/10.1016/j.chroma.2010.07.059 CrossRefPubMedGoogle Scholar
  73. 73.
    Prime, S., Merry, T.: Exoglycosidase sequencing of N-linked glycans by the reagent array analysis method (RAAM). Methods Mol. Biol. 76, 53–69 (1998).  https://doi.org/10.1385/0-89603-355-4:53 PubMedGoogle Scholar
  74. 74.
    Stavenhagen, K., Kolarich, D., Wuhrer, M.: Clinical Glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia. 78(5–6), 307–320 (2015).  https://doi.org/10.1007/s10337-014-2813-7 CrossRefPubMedGoogle Scholar
  75. 75.
    Pabst, M., Grass, J., Toegel, S., Liebminger, E., Strasser, R., Altmann, F.: Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology. 22(3), 389–399 (2012).  https://doi.org/10.1093/glycob/cwr138 CrossRefPubMedGoogle Scholar
  76. 76.
    Walsh, I., Zhao, S., Campbell, M., Taron, C.H., Rudd, P.M.: Quantitative profiling of glycans and glycopeptides: an informatics' perspective. Curr. Opin. Struct. Biol. 40, 70–80 (2016).  https://doi.org/10.1016/j.sbi.2016.07.022 CrossRefPubMedGoogle Scholar
  77. 77.
    Campbell, M.P., Ranzinger, R., Lutteke, T., Mariethoz, J., Hayes, C.A., Zhang, J., Akune, Y., Aoki-Kinoshita, K.F., Damerell, D., Carta, G., York, W.S., Haslam, S.M., Narimatsu, H., Rudd, P.M., Karlsson, N.G., Packer, N.H., Lisacek, F.: Toolboxes for a standardised and systematic study of glycans. BMC bioinformatics. 15(Suppl 1), S9 (2014).  https://doi.org/10.1186/1471-2105-15-S1-S9 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Marth, J.D., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Symbol nomenclature for glycan representation. Proteomics. 9(24), 5398–5399 (2009).  https://doi.org/10.1002/pmic.200900708 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology. 25(12), 1323–1324 (2015).  https://doi.org/10.1093/glycob/cwv091 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Harvey, D., Merry, A., Royle, L., Campbell, M., Dwek, R., Rudd, P.: Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics. 9(15), 3796–3801 (2009)CrossRefPubMedGoogle Scholar
  81. 81.
    Harvey, D., Merry, A., Royle, L., Campbell, M., Rudd, P.: Symbol nomenclature for representing glycan structures: extension to cover different carbohydrate types. Proteomics. 11(22), 4291–4295 (2011)CrossRefPubMedGoogle Scholar
  82. 82.
    York, W.S., Agravat, S., Aoki-Kinoshita, K.F., McBride, R., Campbell, M.P., Costello, C.E., Dell, A., Feizi, T., Haslam, S.M., Karlsson, N., Khoo, K.H., Kolarich, D., Liu, Y., Novotny, M., Packer, N.H., Paulson, J.C., Rapp, E., Ranzinger, R., Rudd, P.M., Smith, D.F., Struwe, W.B., Tiemeyer, M., Wells, L., Zaia, J., Kettner, C.: MIRAGE: the minimum information required for a glycomics experiment. Glycobiology. 24(5), 402–406 (2014).  https://doi.org/10.1093/glycob/cwu018 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Campbell, M.P., Hayes, C.A., Struwe, W.B., Wilkins, M.R., Aoki-Kinoshita, K.F., Harvey, D.J., Rudd, P.M., Kolarich, D., Lisacek, F., Karlsson, N.G., Packer, N.H.: UniCarbKB: putting the pieces together for glycomics research. Proteomics. 11(21), 4117–4121 (2011).  https://doi.org/10.1002/pmic.201100302 CrossRefPubMedGoogle Scholar
  84. 84.
    Campbell, M.P., Packer, N.H.: UniCarbKB: new database features for integrating glycan structure abundance, compositional glycoproteomics data, and disease associations. Biochim. Biophys. Acta. (2016).  https://doi.org/10.1016/j.bbagen.2016.02.016
  85. 85.
    Gotz, L., Abrahams, J.L., Mariethoz, J., Rudd, P.M., Karlsson, N.G., Packer, N.H., Campbell, M.P., Lisacek, F.: GlycoDigest: a tool for the targeted use of exoglycosidase digestions in glycan structure determination. Bioinformatics. 30(21), 3131–3133 (2014).  https://doi.org/10.1093/bioinformatics/btu425 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Campbell, M.P., Nguyen-Khuong, T., Hayes, C.A., Flowers, S.A., Alagesan, K., Kolarich, D., Packer, N.H., Karlsson, N.G.: Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. Biochimica et Biophysica Acta. 1844(1 Pt A), 108–116 (2014).  https://doi.org/10.1016/j.bbapap.2013.04.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jodie L. Abrahams
    • 1
    • 2
  • Matthew P. Campbell
    • 1
    • 2
  • Nicolle H. Packer
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Biomolecular Sciences, Faculty of Science & EngineeringMacquarie UniversitySydneyAustralia
  2. 2.Institute for GlycomicsGriffith UniversityGold CoastAustralia

Personalised recommendations