Glycoconjugate Journal

, Volume 34, Issue 3, pp 377–391 | Cite as

Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells

  • Dulce Papy-Garcia
  • Patricia Albanese


The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.


Heparan sulfate proteoglycan Endosteal niche Bone marrow Hematopoietic stem cell Mesenchymal stem cell Osteoblasts Sulfatase Heparin binding protein 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Couchman, J.: Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 26, 89–114 (2010)PubMedCrossRefGoogle Scholar
  2. 2.
    Kjellen, L., Lindahl, U.: Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991)PubMedCrossRefGoogle Scholar
  3. 3.
    Kreuger, J., et al.: Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 174(3), 323–327 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gallagher, J.T.: Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108(3), 357–361 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kreuger, J., et al.: Fibroblast growth factors share binding sites in heparan sulphate. Biochem. J. 389(Pt 1), 145–150 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lindahl, U., Kusche-Gullberg, M., Kjellen, L.: Regulated diversity of heparan sulfate. J. Biol. Chem. 273(39), 24979–24982 (1998)PubMedCrossRefGoogle Scholar
  7. 7.
    Lindahl, U., Li, J.P.: Interactions between heparan sulfate and proteins-design and functional implications. Int. Rev. Cell Mol. Biol. 276, 105–159 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    Kreuger, J., et al.: Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J. Biol. Chem. 276(33), 30744–30752 (2001)PubMedCrossRefGoogle Scholar
  9. 9.
    Huynh, M.B., et al.: Glycosaminoglycans from aged human hippocampus have altered capacities to regulate trophic factors activities but not Abeta42 peptide toxicity. Neurobiol. Aging. 33(5), 1005 e11–1005 e22 (2012)CrossRefGoogle Scholar
  10. 10.
    Huynh, M.B., et al.: Age-related changes in rat myocardium involve altered capacities of glycosaminoglycans to potentiate growth factor functions and heparan sulfate-altered sulfation. J. Biol. Chem. 287(14), 11363–11373 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Negroni, E., et al.: Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate. J. Neuropathol. Exp. Neurol. 73(8), 789–797 (2014)PubMedCrossRefGoogle Scholar
  12. 12.
    Chevalier, F., et al.: A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: towards a matrix-based therapy? Eur. Cell. Mater. 30, 51–68 (2015)PubMedCrossRefGoogle Scholar
  13. 13.
    Sugahara, K., Kitagawa, H.: Heparin and heparan sulfate biosynthesis. IUBMB Life. 54(4), 163–175 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    Berninsone, P., Hirschberg, C.B.: Nucleotide sugars, nucleotide sulfate, and ATP transporters of the endoplasmic reticulum and Golgi apparatus. Ann. N. Y. Acad. Sci. 842, 91–99 (1998)PubMedCrossRefGoogle Scholar
  15. 15.
    Fuller, M., et al.: A defect in exodegradative pathways provides insight into endodegradation of heparan and dermatan sulfates. Glycobiology. 16(4), 318–325 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)PubMedCrossRefGoogle Scholar
  17. 17.
    Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446(7139), 1030–1037 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    Iozzo, R.V.: Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998)PubMedCrossRefGoogle Scholar
  19. 19.
    Bix, G., Iozzo, R.V.: Novel interactions of perlecan: unraveling perlecan's role in angiogenesis. Microsc. Res. Tech. 71(5), 339–348 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Hohenester, E., et al.: The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol. Cell. 4(5), 783–792 (1999)PubMedCrossRefGoogle Scholar
  21. 21.
    Halfter, W., et al.: Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 273(39), 25404–25412 (1998)PubMedCrossRefGoogle Scholar
  22. 22.
    Afratis, N.A., et al.: Syndecans - key regulators of cell signaling and biological functions. FEBS J. 284(1), 14 (2017)CrossRefGoogle Scholar
  23. 23.
    Fico, A., Maina, F., Dono, R.: Fine-tuning of cell signaling by glypicans. Cell. Mol. Life Sci. 68(6), 6 (2011)CrossRefGoogle Scholar
  24. 24.
    Fuster, M.M., Wang, L.: Endothelial heparan sulfate in angiogenesis. Prog. Mol. Biol. Transl. Sci. 93, 179–212 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sarrazin, S., Lamanna, W.C., Esko, J.D.: Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3(7) (2011). doi: 10.1101/cshperspect.a004952
  26. 26.
    Lin, X.: Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 131(24), 6009–6021 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    Schofield, R.: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 4(1–2), 7–25 (1978)PubMedGoogle Scholar
  28. 28.
    Asada, N., Katayama, Y.: Regulation of hematopoiesis in endosteal microenvironments. Int. J. Hematol. 99(6), 679–684 (2014)PubMedCrossRefGoogle Scholar
  29. 29.
    Kiel, M.J., Morrison, S.J.: Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8(4), 290–301 (2008)PubMedCrossRefGoogle Scholar
  30. 30.
    Stier, S., et al.: Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201(11), 1781–1791 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhang, J., et al.: Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 425(6960), 836–841 (2003)PubMedCrossRefGoogle Scholar
  32. 32.
    Arai, F., et al.: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 118(2), 149–161 (2004)PubMedCrossRefGoogle Scholar
  33. 33.
    Yoshihara, H., et al.: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 1(6), 685–697 (2007)PubMedCrossRefGoogle Scholar
  34. 34.
    Mendez-Ferrer, S., et al.: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 466(7308), 829–834 (2012)CrossRefGoogle Scholar
  35. 35.
    Levesque, J.P., Helwani, F.M., Winkler, I.G.: The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia. 24(12), 1979–1992 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    Bonewald, L.F.: The amazing osteocyte. J. Bone Miner. Res. 26(2), 229–238 (2011)PubMedCrossRefGoogle Scholar
  37. 37.
    Tatsumi, S., et al.: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 5(6), 464–475 (2007)PubMedCrossRefGoogle Scholar
  38. 38.
    Scadden, D.T.: The stem-cell niche as an entity of action. Nature. 441(7097), 1075–1079 (2006)PubMedCrossRefGoogle Scholar
  39. 39.
    Kollet, O., et al.: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12(6), 657–664 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    Sugiyama, T., et al.: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25(6), 977–988 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Sacchetti, B., et al.: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 131(2), 324–336 (2007)PubMedCrossRefGoogle Scholar
  42. 42.
    Heissig, B., et al.: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 109(5), 625–637 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Avecilla, S.T., et al.: Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat. Med. 10(1), 64–71 (2004)PubMedCrossRefGoogle Scholar
  44. 44.
    Purton, L.E., Scadden, D.T.: The hematopoietic stem cell niche. Harvard Stem Cell Institute, Cambridge (2008)Google Scholar
  45. 45.
    Adams, G.B., Scadden, D.T.: The hematopoietic stem cell in its place. Nat. Immunol. 7(4), 333–337 (2006)Google Scholar
  46. 46.
    Friel, J., et al.: Diverse isoforms of colony-stimulating factor-1 have different effects on the development of stroma-dependent hematopoietic cells. J. Cell. Physiol. 204(1), 247–259 (2005)PubMedCrossRefGoogle Scholar
  47. 47.
    Zandstra, P.W., Lauffenburger, D.A., Eaves, C.J.: A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood. 96(4), 1215–1222 (2000)PubMedGoogle Scholar
  48. 48.
    Doran, M.R., et al.: Surface-bound stem cell factor and the promotion of hematopoietic cell expansion. Biomaterials. 30(25), 4047–4052 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    Bhatia, M., et al.: Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186(4), 619–624 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Miller, C.L., Eaves, C.J.: Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc. Natl. Acad. Sci. U. S. A. 94(25), 13648–13653 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Conneally, E., et al.: Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc. Natl. Acad. Sci. U. S. A. 94(18), 9836–9841 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ueda, T., et al.: Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J. Clin. Invest. 105(7), 1013–1021 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ehninger, A., Trumpp, A.: The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208(3), 421–428 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Thoren, L.A., et al.: Kit regulates maintenance of quiescent hematopoietic stem cells. J. Immunol. 180(4), 2045–2053 (2008)PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang, C.C., Sadek, H.A.: Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid. Redox Signal. 20(12), 1891–1901 (2012)CrossRefGoogle Scholar
  56. 56.
    Chen, J., et al.: Erythropoietin-dependent autocrine secretion of tumor necrosis factor-alpha in hematopoietic cells modulates proliferation via MAP kinase--ERK-1/2 and does not require tyrosine docking sites in the EPO receptor. Exp. Cell Res. 298(1), 155–166 (2004)PubMedCrossRefGoogle Scholar
  57. 57.
    Sitnicka, E., et al.: Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity. 17(4), 463–472 (2002)PubMedCrossRefGoogle Scholar
  58. 58.
    Adolfsson, J., et al.: Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity. 15(4), 659–669 (2001)PubMedCrossRefGoogle Scholar
  59. 59.
    Nilsson, S.K., et al.: Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 106(4), 1232–1239 (2005)PubMedCrossRefGoogle Scholar
  60. 60.
    Coombe, D.R., Kett, W.C.: Heparan sulfate-protein interactions: therapeutic potential through structure-function insights. Cell. Mol. Life Sci. 62(4), 410–424 (2005)PubMedCrossRefGoogle Scholar
  61. 61.
    Han, Z.C., et al.: Glycosaminoglycans enhance megakaryocytopoiesis by modifying the activities of hematopoietic growth regulators. J. Cell. Physiol. 168(1), 97–104 (1996)PubMedCrossRefGoogle Scholar
  62. 62.
    Gupta, P., McCarthy, J.B., Verfaillie, C.M.: Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood. 87(8), 3229–3236 (1996)PubMedGoogle Scholar
  63. 63.
    Verfaillie, C.M., Miller, J.S.: CD34+/CD33- cells reselected from macrophage inflammatory protein 1 alpha+interleukin-3--supplemented "stroma-noncontact" cultures are highly enriched for long-term bone marrow culture initiating cells. Blood. 84(5), 1442–1449 (1994)PubMedGoogle Scholar
  64. 64.
    Hoogewerf, A.J., et al.: Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry. 36(44), 13570–13578 (1997)PubMedCrossRefGoogle Scholar
  65. 65.
    Xu, Y., Liu, Y.J., Yu, Q.: Angiopoietin-3 is tethered on the cell surface via heparan sulfate proteoglycans. J. Biol. Chem. 279(39), 41179–41188 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cazes, A., et al.: Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ. Res. 99(11), 1207–1215 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Netelenbos, T., et al.: Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia. 17(1), 175–184 (2003)PubMedCrossRefGoogle Scholar
  68. 68.
    Dar, A., Kollet, O., Lapidot, T.: Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp. Hematol. 34(8), 967–975 (2006)PubMedCrossRefGoogle Scholar
  69. 69.
    Bhardwaj, G., et al.: Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2(2), 172–180 (2001)PubMedCrossRefGoogle Scholar
  70. 70.
    Bhatia, M., et al.: Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 189(7), 1139–1148 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Khan, S.A., et al.: Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity. Am. J. Physiol. Cell. Physiol. 294(6), C1387–C1397 (2008)PubMedCrossRefGoogle Scholar
  72. 72.
    Jackson, R.A., Nurcombe, V., Cool, S.M.: Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis. Gene. 379, 79–91 (2006)PubMedCrossRefGoogle Scholar
  73. 73.
    Yeoh, J.S., et al.: Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells. 24(6), 1564–1572 (2006)PubMedCrossRefGoogle Scholar
  74. 74.
    Marie, P.J., Coffin, J.D., Hurley, M.M.: FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J. Cell. Biochem. 96(5), 888–896 (2005)PubMedCrossRefGoogle Scholar
  75. 75.
    Bonaventure, J., El Ghouzzi, V.: Molecular and cellular bases of syndromic craniosynostoses. Expert Rev. Mol. Med. 5(4), 1–17 (2003)PubMedCrossRefGoogle Scholar
  76. 76.
    Marie, P.J.: Fibroblast growth factor signaling controlling osteoblast differentiation. Gene. 316, 23–32 (2003)PubMedCrossRefGoogle Scholar
  77. 77.
    Turnbull, J.E., et al.: Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J. Biol. Chem. 267(15), 10337–10341 (1992)PubMedGoogle Scholar
  78. 78.
    Pellegrini, L., et al.: Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 407(6807), 1029–1034 (2000)PubMedCrossRefGoogle Scholar
  79. 79.
    Jackson, R.A., et al.: Heparan sulfate regulates the anabolic activity of MC3T3-E1 preosteoblast cells by induction of Runx2. J. Cell. Physiol. 210(1), 38–50 (2007)PubMedCrossRefGoogle Scholar
  80. 80.
    Logan, C.Y., Nusse, R.: The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004)PubMedCrossRefGoogle Scholar
  81. 81.
    Bejsovec, A.: Wnt pathway activation: new relations and locations. Cell. 120(1), 11–14 (2005)PubMedGoogle Scholar
  82. 82.
    Morimoto-Tomita, M., et al.: Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 277(51), 49175–49185 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hoppler, S., Kavanagh, C.L.: Wnt signalling: variety at the core. J. Cell Sci. 120(Pt 3), 385–393 (2007)PubMedCrossRefGoogle Scholar
  84. 84.
    Anton, R., Kestler, H.A., Kuhl, M.: Beta-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett. 581(27), 5247–5254 (2007)PubMedCrossRefGoogle Scholar
  85. 85.
    Duncan, A.W., et al.: Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6(3), 314–322 (2005)PubMedCrossRefGoogle Scholar
  86. 86.
    Lai, X.N., et al.: Sensory neuropeptide SP modulating expression of EGF, FGF-2 and their receptors in fibroblasts of granulation in vivo and in vitro. Zhonghua Yi Xue Za Zhi. 83(16), 1433–1436 (2003)PubMedGoogle Scholar
  87. 87.
    Schofield, K.P., Gallagher, J.T., David, G.: Expression of proteoglycan core proteins in human bone marrow stroma. Biochem. J. 343(Pt 3), 663–668 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Spooncer, E., et al.: Regulation of haemopoiesis in long-term bone marrow cultures. IV. Glycosaminoglycan synthesis and the stimulation of haemopoiesis by beta-D-xylosides. J. Cell Biol. 96(2), 510–514 (1983)PubMedCrossRefGoogle Scholar
  89. 89.
    Spooncer, E., Dexter, T.M.: Transplantation of long-term cultured bone marrow cells. Transplantation. 35(6), 624–627 (1983)PubMedCrossRefGoogle Scholar
  90. 90.
    Gallagher, J.T.: E. Spooncer, and T.M. Dexter, Role of the cellular matrix in haemopoiesis. I. Synthesis of glycosaminoglycans by mouse bone marrow cell cultures. J. Cell Sci. 63, 155–171 (1983)PubMedGoogle Scholar
  91. 91.
    Wight, T.N., et al.: Proteoglycans in human long-term bone marrow cultures: biochemical and ultrastructural analyses. Blood. 67(5), 1333–1343 (1986)PubMedGoogle Scholar
  92. 92.
    Gallagher, J.T., Lyon, M., Steward, W.P.: Structure and function of heparan sulphate proteoglycans. Biochem. J. 236(2), 313–325 (1986)PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Drzeniek, Z., et al.: Proteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5. Biochem. J. 327(Pt 2), 473–480 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gupta, P., et al.: Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood. 92(12), 4641–4651 (1998)PubMedGoogle Scholar
  95. 95.
    Rodgers, K.D., San Antonio, J.D., Jacenko, O.: Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev. Dyn. 237(10), 2622–2642 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bruno, E., et al.: Marrow-derived heparan sulfate proteoglycan mediates the adhesion of hematopoietic progenitor cells to cytokines. Exp. Hematol. 23(11), 1212–1217 (1995)PubMedGoogle Scholar
  97. 97.
    Siczkowski, M., Clarke, D., Gordon, M.Y.: Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood. 80(4), 912–919 (1992)PubMedGoogle Scholar
  98. 98.
    Wight, T.N., Kinsella, M.G., Qwarnstrom, E.E.: The role of proteoglycans in cell adhesion, migration and proliferation. Curr. Opin. Cell Biol. 4(5), 793–801 (1992)PubMedCrossRefGoogle Scholar
  99. 99.
    Bernfield, M., et al.: Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393 (1992)PubMedCrossRefGoogle Scholar
  100. 100.
    Chen, X.D., et al.: Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J. Bone Miner. Res. 22(12), 1943–1956 (2007)PubMedCrossRefGoogle Scholar
  101. 101.
    Tumova, S., Woods, A., Couchman, J.R.: Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. Cell Biol. 32(3), 269–288 (2000)PubMedCrossRefGoogle Scholar
  102. 102.
    Rapraeger, A.C.: Syndecan-regulated receptor signaling. J. Cell Biol. 149(5), 995–998 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zaragosi, L.E., et al.: Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis. Carcinogenesis. 36(1), 32–40 (2014)PubMedCrossRefGoogle Scholar
  104. 104.
    Gotte, M., et al.: Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Invest. Ophthalmol. Vis. Sci. 43(4), 1135–1141 (2002)PubMedGoogle Scholar
  105. 105.
    Andersen, N.F., et al.: Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis. Eur. J. Haematol. 95(3), 211–217 (2015)PubMedCrossRefGoogle Scholar
  106. 106.
    Mahtouk, K., et al.: Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood. 109(11), 4914–4923 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jung, O., et al.: Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogene. 5, e202 (2016)CrossRefGoogle Scholar
  108. 108.
    Filmus, J.: Glypicans in growth control and cancer. Glycobiology. 11(3), 19R–23R (2001)PubMedCrossRefGoogle Scholar
  109. 109.
    Yanagishita, M., Hascall, V.C.: Cell surface heparan sulfate proteoglycans. J. Biol. Chem. 267(14), 9451–9454 (1992)PubMedGoogle Scholar
  110. 110.
    Viviano, B.L., et al.: Altered hematopoiesis in glypican-3-deficient mice results in decreased osteoclast differentiation and a delay in endochondral ossification. Dev. Biol. 282(1), 152–162 (2005)PubMedCrossRefGoogle Scholar
  111. 111.
    Haupt, L.M., et al.: The heparan sulfate proteoglycan (HSPG) glypican-3 mediates commitment of MC3T3-E1 cells toward osteogenesis. J. Cell. Physiol. 220(3), 780–791 (2009)PubMedCrossRefGoogle Scholar
  112. 112.
    Teplyuk, N.M., et al.: The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts. J. Cell. Biochem. 107(1), 144–154 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Khurana, S., et al.: Glypican-3-mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance. Blood. 121(14), 2587–2595 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Litwack, E.D., et al.: Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev. Dyn. 211(1), 72–87 (1998)PubMedCrossRefGoogle Scholar
  115. 115.
    Siebertz, B., et al.: Expression of glypican-4 in haematopoietic-progenitor and bone-marrow-stromal cells. Biochem. J. 344(Pt 3), 937–943 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Arikawa-Hirasawa, E., et al.: Perlecan is essential for cartilage and cephalic development. Nat. Genet. 23(3), 354–358 (1999)PubMedCrossRefGoogle Scholar
  117. 117.
    Thompson, W.R., et al.: Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. J. Bone Miner. Res. 26(3), 618–629 (2011)PubMedCrossRefGoogle Scholar
  118. 118.
    Wang, B., et al.: Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system. J. Bone Miner. Res. 29(4), 878–891 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gustafsson, E., et al.: Role of collagen type II and perlecan in skeletal development. Ann. N. Y. Acad. Sci. 995, 140–150 (2003)PubMedCrossRefGoogle Scholar
  120. 120.
    Ishijima, M., et al.: Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol. 31(4), 234–245 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Klein, G., et al.: Perlecan in human bone marrow: a growth-factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14(6), 457–465 (1995)PubMedCrossRefGoogle Scholar
  122. 122.
    Yang, W.D., et al.: Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. Tissue Eng. 11(1–2), 76–89 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Muthusamy, A., Cooper, C.R., Gomes Jr., R.R.: Soluble perlecan domain I enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells. BMC Biochem. 11, 43 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lai, Y., et al.: Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells Dev. 19(7), 1095–1107 (2010)PubMedCrossRefGoogle Scholar
  125. 125.
    Nigro, J., et al.: The effect of bovine endosteum-derived particles on the proliferation of human mesenchymal stem cells. Biomaterials. 31(21), 5689–5699 (2010)PubMedCrossRefGoogle Scholar
  126. 126.
    Nakamura, R., Nakamura, F., Fukunaga, S.: Contrasting effect of perlecan on adipogenic and osteogenic differentiation of mesenchymal stem cells in vitro. Anim. Sci. J. 85(3), 262–270 (2014)PubMedCrossRefGoogle Scholar
  127. 127.
    Decarlo, A.A., et al.: Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis. BMC Biotechnol. 12, 60 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ruegg, M.A., Bixby, J.L.: Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci. 21(1), 22–27 (1998)PubMedCrossRefGoogle Scholar
  129. 129.
    Kim, N., et al.: Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 135(2), 334–342 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hausser, H.J., et al.: Agrin is highly expressed by chondrocytes and is required for normal growth. Histochem. Cell Biol. 127(4), 363–374 (2007)PubMedCrossRefGoogle Scholar
  131. 131.
    Mazzon, C., et al.: Agrin is required for survival and function of monocytic cells. Blood. 119(23), 5502–5511 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhang, J., et al.: Agrin is involved in lymphocytes activation that is mediated by alpha-dystroglycan. FASEB J. 20(1), 50–58 (2006)PubMedCrossRefGoogle Scholar
  133. 133.
    Barresi, R., Campbell, K.P.: Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119(Pt 2), 199–207 (2006)PubMedCrossRefGoogle Scholar
  134. 134.
    Yang, B., et al.: SH3 domain-mediated interaction of dystroglycan and Grb2. J. Biol. Chem. 270(20), 11711–11714 (1995)PubMedCrossRefGoogle Scholar
  135. 135.
    Koch, C.A., et al.: SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 252(5006), 668–674 (1991)PubMedCrossRefGoogle Scholar
  136. 136.
    Steidl, U., et al.: Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood. 104(1), 81–88 (2004)PubMedCrossRefGoogle Scholar
  137. 137.
    Mazzon, C., et al.: The critical role of agrin in the hematopoietic stem cell niche. Blood. 118(10), 2733–2742 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kiel, M.J., et al.: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121(7), 1109–1121 (2005)PubMedCrossRefGoogle Scholar
  139. 139.
    To, L.B, et al.: The biology and clinical uses of blood stem cells. Blood. 89(7), 2233–2258 (1997)Google Scholar
  140. 140.
    Weaver, C.H., Schulman, K.A., Buckner, C.D.: Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim. Bone Marrow Transplant. 27(Suppl 2), S23–S29 (2001)PubMedCrossRefGoogle Scholar
  141. 141.
    Winkler, I.G., Levesque, J.P.: Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp. Hematol. 34(8), 996–1009 (2006)PubMedCrossRefGoogle Scholar
  142. 142.
    Ma, Q., et al.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95(16), 9448–9453 (1998)PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Nagasawa, T., et al.: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 382(6592), 635–638 (1996)PubMedCrossRefGoogle Scholar
  144. 144.
    Bleul, C.C., et al.: A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184(3), 1101–1109 (1996)PubMedCrossRefGoogle Scholar
  145. 145.
    Netelenbos, T., et al.: Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells. J. Leukoc. Biol. 72(2), 353–362 (2002)PubMedGoogle Scholar
  146. 146.
    Avigdor, A., et al.: CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 103(8), 2981–2989 (2004)PubMedCrossRefGoogle Scholar
  147. 147.
    Amara, A., et al.: Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J. Biol. Chem. 274(34), 23916–23925 (1999)PubMedCrossRefGoogle Scholar
  148. 148.
    Sadir, R., et al.: Characterization of the stromal cell-derived factor-1alpha-heparin complex. J. Biol. Chem. 276(11), 8288–8296 (2001)PubMedCrossRefGoogle Scholar
  149. 149.
    Frenette, P.S., Weiss, L.: Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood. 96(7), 2460–2468 (2000)PubMedGoogle Scholar
  150. 150.
    Sweeney, E.A., et al.: Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood. 99(1), 44–51 (2002)PubMedCrossRefGoogle Scholar
  151. 151.
    Albanese, P., et al.: Glycosaminoglycan mimetics-induced mobilization of hematopoietic progenitors and stem cells into mouse peripheral blood: structure/function insights. Exp. Hematol. 37(9), 1072–1083 (2009)PubMedCrossRefGoogle Scholar
  152. 152.
    Papy-Garcia, D., et al.: Nondegradative sulfation of polysaccharides. Synthesis and structure characterization of biologically active heparan sulfate mimetics. Macromolecules. 38, 4647–4654 (2005)CrossRefGoogle Scholar
  153. 153.
    Saez, B., et al.: Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood. 124(19), 2937–2947 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Pittenger, M.F., et al.: Multilineage potential of adult human mesenchymal stem cells. Science. 284(5411), 143–147 (1999)PubMedCrossRefGoogle Scholar
  155. 155.
    Muschler, G.F., Nakamoto, C., Griffith, L.G.: Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 86-A(7), 1541–1558 (2004)PubMedCrossRefGoogle Scholar
  156. 156.
    Wexler, S.A., et al.: Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol. 121(2), 368–374 (2003)PubMedCrossRefGoogle Scholar
  157. 157.
    Baksh, D., Song, L., Tuan, R.S.: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 8(3), 301–316 (2004)PubMedCrossRefGoogle Scholar
  158. 158.
    Dombrowski, C., et al.: Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 18(4), 661–670 (2009)PubMedCrossRefGoogle Scholar
  159. 159.
    Manton, K.J., et al.: Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells. 25(11), 2845–2854 (2007)PubMedCrossRefGoogle Scholar
  160. 160.
    Cool, S.M., Nurcombe, V.: The osteoblast-heparan sulfate axis: control of the bone cell lineage. Int. J. Biochem. Cell Biol. 37(9), 1739–1745 (2005)PubMedCrossRefGoogle Scholar
  161. 161.
    Nurcombe, V., et al.: Temporal and functional changes in glycosaminoglycan expression during osteogenesis. J. Mol. Histol. 38(5), 469–481 (2007)PubMedCrossRefGoogle Scholar
  162. 162.
    Montero, A., et al.: Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J. Clin. Invest. 105(8), 1085–1093 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Muller, B., et al.: Increased levels of xylosyltransferase I correlate with the mineralization of the extracellular matrix during osteogenic differentiation of mesenchymal stem cells. Matrix Biol. 27(2), 139–149 (2008)PubMedCrossRefGoogle Scholar
  164. 164.
    Molteni, A., et al.: Alterations of matrix- and cell-associated proteoglycans inhibit osteogenesis and growth response to fibroblast growth factor-2 in cultured rat mandibular condyle and calvaria. Cell Tissue Res. 295(3), 523–536 (1999)PubMedCrossRefGoogle Scholar
  165. 165.
    Ostrovsky, O., et al.: Differential effects of heparin saccharides on the formation of specific fibroblast growth factor (FGF) and FGF receptor complexes. J. Biol. Chem. 277(4), 2444–2453 (2002)PubMedCrossRefGoogle Scholar
  166. 166.
    Goodger, S.J., et al.: Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J. Biol. Chem. 283(19), 13001–13008 (2008)PubMedCrossRefGoogle Scholar
  167. 167.
    Guimond, S.E., Turnbull, J.E.: Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr. Biol. 9(22), 1343–1346 (1999)PubMedCrossRefGoogle Scholar
  168. 168.
    Frescaline, G., et al.: Glycosaminoglycans mimetics potentiate the clonogenicity, proliferation, migration and differentiation properties of rat mesenchymal stem cells. Stem Cell Res. 8(2), 180–192 (2012)PubMedCrossRefGoogle Scholar
  169. 169.
    Frescaline, G., et al.: Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo. Tissue Eng. Part A. 19(13–14), 1641–1653 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Grellier, M., Bordenave, L., Amedee, J.: Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 27(10), 562–571 (2009)PubMedCrossRefGoogle Scholar
  171. 171.
    Esko, J.D., Lindahl, U.: Molecular diversity of heparan sulfate. J. Clin. Invest. 108(2), 169–173 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kusche-Gullberg, M., et al.: Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J. Biol. Chem. 273(19), 11902–11907 (1998)PubMedCrossRefGoogle Scholar
  173. 173.
    Grobe, K., et al.: Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development. 132(16), 3777–3786 (2005)PubMedCrossRefGoogle Scholar
  174. 174.
    Fan, G., et al.: Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. 467(1), 7–11 (2000)PubMedCrossRefGoogle Scholar
  175. 175.
    Ringvall, M., et al.: Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem. 275(34), 25926–25930 (2000)PubMedCrossRefGoogle Scholar
  176. 176.
    Forsberg, E., et al.: Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature. 400(6746), 773–776 (1999)PubMedCrossRefGoogle Scholar
  177. 177.
    Humphries, D.E., et al.: Heparin is essential for the storage of specific granule proteases in mast cells. Nature. 400(6746), 769–772 (1999)PubMedCrossRefGoogle Scholar
  178. 178.
    Pallerla, S.R., et al.: Altered heparan sulfate structure in mice with deleted NDST3 gene function. J. Biol. Chem. 283(24), 16885–16894 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Jakobsson, L., et al.: Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell. 10(5), 625–634 (2006)PubMedCrossRefGoogle Scholar
  180. 180.
    Forsberg, M., et al.: Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J. Biol. Chem. 287(14), 10853–10862 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Zhao, S., et al.: Heparan sulfate 6-O-sulfotransferase 3 is involved in bone marrow mesenchymal stromal cell osteogenic differentiation. Biochemistry (Mosc). 80(3), 379–389 (2015)CrossRefGoogle Scholar
  182. 182.
    Shukla, D., et al.: A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 99(1), 13–22 (1999)PubMedCrossRefGoogle Scholar
  183. 183.
    Patel, V.N., et al.: Hs3st3-modified heparan sulfate controls KIT+ progenitor expansion by regulating 3-O-sulfotransferases. Dev. Cell. 29(6), 662–673 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Hirano, K., Van Kuppevelt, T.H., Nishihara, S.: The transition of mouse pluripotent stem cells from the naive to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody. Biochem. Biophys. Res. Commun. 430(3), 1175–1181 (2013)PubMedCrossRefGoogle Scholar
  185. 185.
    Hirano, K., et al.: 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling. PLoS One. 7(8), e43440 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Martinez, P., et al.: Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans. Glycobiology. 25(5), 502–513 (2015)PubMedCrossRefGoogle Scholar
  187. 187.
    Sikora, A.S., et al.: Regulation of the expression of Heparan sulfate 3-O-sulfotransferase 3B (HS3ST3B) by inflammatory stimuli in human monocytes. J. Cell. Biochem. 117(7), 1529–1542 (2016)PubMedCrossRefGoogle Scholar
  188. 188.
    Kram, V., et al.: Heparanase is expressed in osteoblastic cells and stimulates bone formation and bone mass. J. Cell. Physiol. 207(3), 784–792 (2006)PubMedCrossRefGoogle Scholar
  189. 189.
    Schmidt, B., et al.: A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell. 82(2), 271–278 (1995)PubMedCrossRefGoogle Scholar
  190. 190.
    Cosma, M.P., et al.: The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell. 113(4), 445–456 (2003)PubMedCrossRefGoogle Scholar
  191. 191.
    Dierks, T., et al.: Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 113(4), 435–444 (2003)PubMedCrossRefGoogle Scholar
  192. 192.
    Sardiello, M., et al.: Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum. Mol. Genet. 14(21), 3203–3217 (2005)PubMedCrossRefGoogle Scholar
  193. 193.
    Cosma, M.P., et al.: Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency. Hum. Mutat. 23(6), 576–581 (2004)PubMedCrossRefGoogle Scholar
  194. 194.
    Settembre, C., et al.: Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc. Natl. Acad. Sci. U. S. A. 104(11), 4506–4511 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Buono, M., et al.: Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. J. Exp. Med. 207(8), 1647–1660 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Taichman, R.S.: Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood. 105(7), 2631–2639 (2005)PubMedCrossRefGoogle Scholar
  197. 197.
    Morrison, S.J., Spradling, A.C.: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 132(4), 598–611 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Bianco, P., et al.: Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 19(3), 180–192 (2001)PubMedCrossRefGoogle Scholar
  199. 199.
    Katayama, Y., et al.: Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 124(2), 407–421 (2006)PubMedCrossRefGoogle Scholar
  200. 200.
    Gordon, M.Y.: Extracellular matrix of the marrow microenvironment. Br. J. Haematol. 70(1), 1–4 (1988)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.CRRET LaboratoryUniversité Paris EstCréteilFrance

Personalised recommendations