Glycoconjugate Journal

, Volume 34, Issue 1, pp 127–138 | Cite as

Catfish rhamnose-binding lectin induces G0/1 cell cycle arrest in Burkitt’s lymphoma cells via membrane surface Gb3

  • Shigeki Sugawara
  • Changhun Im
  • Tasuku Kawano
  • Takeo Tatsuta
  • Yasuhiro Koide
  • Daiki Yamamoto
  • Yasuhiro Ozeki
  • Kazuo Nitta
  • Masahiro Hosono
Original Article


Silurus asotus egg lectin (SAL), an α-galactoside-binding protein isolated from the eggs of catfish, is a member of the rhamnose-binding lectin family that binds to Gb3 glycan (Galα1–4Galβ1–4Glc). We have previously demonstrated that SAL reduces the proliferation of Gb3-expressing Burkitt’s lymphoma Raji cells and confirm here that it does not reduce their viability, indicating that unlike other lectins, it is not cytotoxic. The aim of this study was to determine the signal transduction mechanism(s) underlying this novel SAL/Gb3 binding-mediated effect profile. SAL/Gb3 interaction arrested the cell cycle through increasing the G0/1 phase population of Raji cells. SAL suppressed the transcription of cell cycle-related factors such as c-MYC, cyclin D3, and cyclin-dependent protein kinase (CDK)-4. Conversely, the CDK inhibitors p21 and p27 were elevated by treatment with SAL. In particular, the production of p27 in response to SAL treatment increased steadily, whereas p21 production was maximal at 12 h and lower at 24 h. Activation of Ras-MEK-ERK pathway led to an increase in expression of p21. Notably, treatment of Raji cells with anti-Gb3 mAb alone did not produce the above effects. Taken together, our findings suggest that Gb3 on the Raji cell surface interacts with SAL to trigger sequential GDP-Ras phosphorylation, Ras-MEK-ERK pathway activation, p21 production, and cell cycle arrest at the G0/1 phase.


Cell cycle arrest Extracellular signal-regulated kinase Globotriaosylceramide p21 SUEL/rhamnose-binding lectin 



Bromodeoxy uridine


Cyclin D3


Cyclin-dependent protein kinase


Extracellular signal-regulated kinase


Fetal bovine serum


Fluorescein isothiocyanate




Guanosine diphosphate


Glycosphingolipid-enriched microdomains


Guanosine triphosphate




Monoclonal antibody


c-Jun N-terminal kinase


Mitogen-activated protein kinase


MAPK/ERK kinase


Polyvinylidene difluoride


Quantitative reverse transcription-polymerase chain reaction


Silurus asotus egg lectin


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis


Sea urchin egg lectin



This study was supported by the “Academic Frontier” Project for Private Universities and the “Strategic Project to Support the Formation of Research Bases at Private Universities (SENRYAKU)” from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. We would like to thank Editage ( for English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2016_9739_MOESM1_ESM.docx (665 kb)
ESM 1 (DOCX 665 kb)


  1. 1.
    Krajhanzl A., Horejsi V., Kocourek K.: Studies on lectins. XLI. Isolation and characterization of a blood group B specific lectin from the role of the powan (Coregonus lavaretus maraena). Biochem. Biophys Acta. 532, 209–214 (1978)PubMedGoogle Scholar
  2. 2.
    Krajhanzl A., Horejsi V., Kocourek K.: Studies on lectins. XLII. Isolation, partial characterization and comparison of lectins from the roe of five fish species. Biochem. Biophys. Acta. 532, 215–224 (1978)Google Scholar
  3. 3.
    Sakakibara F., Kawauchi H., Takayanagi G.: Blood group B-specific lectin of Plecoglossus altivelis (Ayu fish) eggs. Biochim Biophys Acta. 841, 103–111 (1985)CrossRefPubMedGoogle Scholar
  4. 4.
    Ozeki Y., Matsui T., Suzuki M., Titani T.: Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry. 30, 2391–2394 (1991)CrossRefPubMedGoogle Scholar
  5. 5.
    Hosono M., Ishikawa K., Mineki R., Murayama K., Numata C., Ogawa Y., Takayanagi Y., Nitta K.: Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochim Biophys Acta. 1472, 668–675 (1999)CrossRefPubMedGoogle Scholar
  6. 6.
    Kawano T., Sugawara S., Hosono M., Tatsuta T., Nitta K.: Alteration of gene expression induced by Silurus asotus lectin in Burkitt’s lymphoma cells. Biol Pharm Bull. 31, 998–1002 (2008)CrossRefPubMedGoogle Scholar
  7. 7.
    Sugawara S., Hosono M., Ogawa Y., Takayanagi M., Nitta K.: Catfish egg lectin causes rapid activation of multidrug resistance 1 P-glycoprotein as a lipid translocase. Biol Pharm Bull. 28, 434–441 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    Shirai T., Watanabe Y., Lee M.S., Ogawa T., Muramoto K.: Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol. 391, 390–403 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    Watanabe M., Kono T., Matsushima-Hibiya Y., Kanazawa T., Nishisaka N., Kishimoto T., Koyama K., Sugimura T., Wakabayashi K.: Molecular cloning of an apoptosis-inducing protein, pierisin, from cabbage butterfly: possible involvement of ADP-ribosylation in its activity. Proc Natl Acad Sci U S A. 96, 10608–10613 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shiotani B., Kobayashi M., Watanabe M., Yamamoto K., Sugimura T., Wakabayashi K.: Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1. Mol Cancer Res. 4, 125–133 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    Matsushima-Hibiya Y., Watanabe M., Hidari K.I., Miyamoto D., Suzuki Y., Kasama T., Kanazawa T., Koyama K., Sugimura T., Wakabayashi K.: Identification of glycosphingolipid receptors for pierisin-1, a guanine-specific ADP-ribosylation toxin from the cabbage butterfly. J Biol Chem. 278, 9972–9978 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    Katagiri Y.U., Mori T., Nakajima H., Katagiri C., Taguchi T., Takeda T., Kiyokawa N., Fujimoto J.: Activation of Src family kinase yes induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J Biol Chem. 274, 35278–35282 (1999)CrossRefPubMedGoogle Scholar
  13. 13.
    Hosono M., Kawauchi H., Nitta K., Takayanagi Y., Shiokawa H., Mineki R., Murayama K.: Purification and characterization of Silurus Asotus (catfish) roe lectin. Biol Pharm Bull. 16, 1–5 (1993)CrossRefPubMedGoogle Scholar
  14. 14.
    Tennant J.R.: Evaluation of the trypan blue technique for determination of cell viability. Transplantation. 2, 685–694 (1964)CrossRefPubMedGoogle Scholar
  15. 15.
    Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)CrossRefPubMedGoogle Scholar
  16. 16.
    Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. J Biol Chem. 193, 265 (1951)PubMedGoogle Scholar
  17. 17.
    Matsudaira P.T.: Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 262, 10035–10038 (1987)PubMedGoogle Scholar
  18. 18.
    Taylor S.J., Shalloway D.: Cell cycle-dependent activation of ras. Curr Biol. 6, 1621–1627 (1996)CrossRefPubMedGoogle Scholar
  19. 19.
    Taylor S.J., Resnick R.J., Shalloway D.: Nonradioactive determination of ras-GTP levels using activated ras interaction assay. Methods Enzymol. 333, 333–342 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    Yamauchi N., Takezawa T., Kizaki K., Herath C.B., Hashizume K.: Proliferative potential of endometrial stromal cells, and endometrial and placental expression of cyclin in the bovine. J Reprod Dev. 49, 553–560 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    Schmidt B.A., Rose A., Steinhoff C., Strohmeyer T., Hartmann M., Ackermann R.: Up-regulation of cyclin-dependent kinase 4/cyclin D2 expression but down-regulation of cyclin-dependent kinase 2/cyclin E in testicular germ cell tumors. Cancer Res. 61, 4214–4221 (2001)PubMedGoogle Scholar
  22. 22.
    Mateyak M.K., Obaya A.J., Sedivy J.M.: c-Myc regulates Cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol. 19, 4672–4683 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Colo M.D., Mcmahon S.B.: The myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene. 18, 2916–2924 (1999)CrossRefGoogle Scholar
  24. 24.
    Pines J.: Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 308, 697–711 (1995)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sherr C.J.: Cancer cell cycles. Science. 274, 1672–1677 (1996)CrossRefPubMedGoogle Scholar
  26. 26.
    Eguchi H., Carpentier S., Kim S.S., Moss S.F.: p27kip1 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori. Gut. 53, 797–804 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Russo A.A., Jeffrey P.D., Patten A.K., Massagué J., Pavletich N.P.: Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature. 382, 325–331 (1996)CrossRefPubMedGoogle Scholar
  28. 28.
    McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., Stivala F., Libra M., Basecke J., Evangelisti C., Martelli A.M., Franklin R.A.: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773, 1263–1284 (2007)CrossRefPubMedGoogle Scholar
  29. 29.
    Fujii Y., Dohmae N., Takio K., Kawsar S.M., Matsumoto R., Hasan I., Koide Y., Kanaly R.A., Yasumitsu H., Ogawa Y., Sugawara S., Hosono M., Nitta K., Hamako J., Matusi T., Ozeki Y.: A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J Biol Chem. 287, 44772–44783 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Park S.Y., Kwak C.Y., Shayman J.A., Kim J.H.: Globoside promotes activation of ERK by interaction with the epidermal growth factor receptor. Biochim Biophys Acta. 1820, 1141–1148 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nadeem L., Brkic J., Chen Y.F., Bui T., Munir S., Peng C.: Cytoplasmic mislocalization of p27 and CDK2 mediates the anti-migratory and anti-proliferative effects of nodal in human trophoblast cells. J Cell Sci. 126, 445–453 (2013)CrossRefPubMedGoogle Scholar
  32. 32.
    Hong S.K., Kim J.H., Lin M.F., Park J.I.: The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res. 317, 2671–2682 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hwang C.Y., Lee C., Kwon K.S.: Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol. 29, 3379–3389 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hancock J.F.: Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 4, 373–385 (2003)CrossRefPubMedGoogle Scholar
  35. 35.
    Avruch J., Zhang X.F., Kyriakis J.M.: Raf meets ras: completing the framework of a signal transduction pathway. Trends Biochem Sci. 19, 279–283 (1994)CrossRefPubMedGoogle Scholar
  36. 36.
    Fischer C., Sanchez-Ruderisch H., Welzel M., Wiedenmann B., Sakai T., André S., Gabius H.J., Khachigian L., Detjen K.M., Rosewicz S.: Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem. 280, 37266–37277 (2005)CrossRefPubMedGoogle Scholar
  37. 37.
    Ogawa T., Watanabe M., Naganuma T., Muramoto K.: Diversified carbohydrate-binding lectins from marine resources. J Amino Acids. 2011(838914), (2011)Google Scholar
  38. 38.
    Tateno H.: SUEL-related lectins, a lectin family widely distributed throughout organisms. Biosci Biotechnol Biochem. 74, 1141–1114 (2010)CrossRefPubMedGoogle Scholar
  39. 39.
    Murayama K., Taka H., Kaga N., Fujimura T., Mineki R., Shindo N., Morita M., Hosono M., Nitta K.: The structure of Silurus Asotus (catfish) roe lectin (SAL): identification of a noncovalent trimer by mass spectrometry and analytical ultracentrifugation. Anal Biochem. 247, 319–326 (1997)CrossRefPubMedGoogle Scholar
  40. 40.
    Harper J.W., Adami G.R., Wei N., Keyomarsi K., Elledge S.J.: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75, 805–816 (1993)CrossRefPubMedGoogle Scholar
  41. 41.
    Jänicke R.U., Sohn D., Essmann R., Shulze-Osthoff K.: The multiple battles fought by anti-apoptotic p21. Cell Cycle. 6, 407–413 (2007)CrossRefPubMedGoogle Scholar
  42. 42.
    Franchi N., Schiavon F., Carletto M., Gasparini F., Bertoloni G., Tosato S.C., Ballarin L.: Immune roles of a rhamnose-binding lectin in the colonial ascidian Botryllus schlosseri. Immunobiology. 216, 725–736 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    Kawsar S.M.A., Matsumoto R., Fujii Y., Matsuoka H., Masuda N., Chihiro I., Yasumitsu H., Kanaly R.A., Sugawara S., Hosono M., Nitta K., Ishizaki N., Dogasaki C., Hamako J., Matsui T., Ozeki Y.: Cytotoxicity and glycan-binding profile of a D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai). Protein J. 30, 509–519 (2011)CrossRefPubMedGoogle Scholar
  44. 44.
    Watanabe Y., Tateno H., Nakamura-Tsuruta S., Kominami J., Hirabayashi J., Nakamura O., Watanabe T., Kamiya H., Naganuma T., Ogawa T., Naudé R.J., Muramoto K.: The function of rhamnose-binding lectin innate immunity by restricted binding to Gb3. Dev Comp Immunol. 33, 187–197 (2009)CrossRefPubMedGoogle Scholar
  45. 45.
    Kawsar S.M., Matsumoto R., Fujii Y., Yasumitsu H., Dogasaki C., Hosono M., Nitta K., Hamako J., Matsui T., Kojima N., Ozeki Y.: Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs. Biochemistry (Mosc). 74, 709–716 (2009)CrossRefGoogle Scholar
  46. 46.
    Naganuma T., Ogawa T., Hirabayashi J., Kasai K., Kamiya H., Muramoto K.: Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve. Pteria penguin Mol Divers. 10, 607–618 (2006)Google Scholar
  47. 47.
    Lee J.K., Buckhaults P., Wilkes C., Teilhet M., King M.L., Moremen K.W., Pierce M.: Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development. Glycobiology. 7, 367–372 (1997)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Cell Recognition Study, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
  2. 2.Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio SciencesYokohama City UniversityYokohamaJapan

Personalised recommendations