Glycoconjugate Journal

, Volume 34, Issue 3, pp 411–420 | Cite as

MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin−/dermatan sulfate and hyaluronan biosynthesis

  • Manuela ViolaEmail author
  • Kathrin Brüggemann
  • Evgenia Karousou
  • Ilaria Caon
  • Elena Caravà
  • Davide Vigetti
  • Burkhard Greve
  • Christian Stock
  • Giancarlo De Luca
  • Alberto PassiEmail author
  • Martin Götte
Original Article


Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.


Solute carriers Glycosaminoglycans Galactosyltransferase I EXT1 UDP-sugars β4GalT7 



We would like to thank Birgit Pers, Paola Moretto and Sara Deleonibus for expert technical assistance. Funding was provided by German Academic Exchange Service DAAD Grants A/08/15601 (to MV), and EU H2020 RISE-MSCA Project grant number 645756 (GLYCANC) (to MG and AP). The authors acknowledge the Ph.D. School in Biological and Medical Sciences for Ilaria Caon and Elena Caravà fellowships.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Karousou E.G. et al.: Analysis of glycosaminoglycans by electrophoretic approach. Curr. Pharm. Anal. 4(2), 78–89 (2008)CrossRefGoogle Scholar
  2. 2.
    Vigetti D. et al.: Analysis of hyaluronan synthase activity. Methods Mol. Biol. 1229, 201–208 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    Varki, A.: Essentials of glycobiology. (2nd ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 2009Google Scholar
  4. 4.
    Iozzo R.V., Schaefer L.: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hediger M.A. et al.: The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 447(5), 465–468 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    Bernfield M. et al.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    Götte M. et al.: Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome. Hum. Mol. Genet. 17(7), 996–1009 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Kirkbride K.C., Ray B.N., Blobe G.C.: Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem. Sci. 30(11), 611–621 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    Esko J.D., Selleck S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    Bülow H.E., Hobert O.: The molecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell Dev. Biol. 22, 375–407 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    Bishop J.R., Schuksz M., Esko J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446(7139), 1030–1037 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Forsberg E., Kjellén L.: Heparan sulfate: lessons from knockout mice. J. Clin. Invest. 108(2), 175–180 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Whitelock J.M., Iozzo R.V.: Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105(7), 2745–2764 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Sugahara K., Kitagawa H.: Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10(5), 518–527 (2000)CrossRefPubMedGoogle Scholar
  15. 15.
    Seidler D.G. et al.: Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7. J Mol Med (Berl). 84(7), 583–594 (2006)CrossRefGoogle Scholar
  16. 16.
    Presto J. et al.: Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc. Natl. Acad. Sci. U. S. A. 105(12), 4751–4756 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Busse M. et al.: Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J. Biol. Chem. 282(45), 32802–32810 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    Filipek-Górniok B. et al.: Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev. Dyn. 242(8), 964–975 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    Passi, A., et al., O-GlcNAcylation and hyaluronan synthesis. FASEB J. 26 (2012)Google Scholar
  20. 20.
    Vigetti D. et al.: Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J. Biol. Chem. 287(42), 35544–35555 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ishida N., Kawakita M.: Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35. Pflugers Arch. 447(5), 768–775 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    Hiraoka S. et al.: Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat. Med. 13(11), 1363–1367 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Hwang H.Y., Horvitz H.R.: The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc. Natl. Acad. Sci. U. S. A. 99(22), 14224–14229 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Götte M.: Syndecans in inflammation. FASEB J. 17(6), 575–591 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Karousou, E., et al.: Collagen VI and hyaluronan: the common role in breast cancer. Biotechnol. Res. Int. 2014Google Scholar
  26. 26.
    Vigetti D. et al.: Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J. 281(22), 4980–4992 (2014)CrossRefPubMedGoogle Scholar
  27. 27.
    Vigetti D. et al.: Hyaluronan: biosynthesis and signaling. Biochim. Biophys. Acta. 1840(8), 2452–2459 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    Vigetti D. et al.: Metabolic control of hyaluronan synthases. Matrix Biol. 35, 8–13 (2014)CrossRefPubMedGoogle Scholar
  29. 29.
    Multhaupt H.A. et al.: Extracellular matrix component signaling in cancer. Adv. Drug Deliv. Rev. 97, 28–40 (2016)CrossRefPubMedGoogle Scholar
  30. 30.
    Soares M.A. et al.: Heparan sulfate proteoglycans may promote or inhibit cancer progression by interacting with integrins and affecting cell migration. Biomed. Res. Int. 2015, 453801 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Beauvais D.M., Rapraeger A.C.: Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells. Exp. Cell Res. 286(2), 219–232 (2003)CrossRefPubMedGoogle Scholar
  32. 32.
    Feugaing D.D.S., Goette M., Viola M.: More than matrix: the multifaceted role of decorin in cancer. Eur. J. Cell Biol. 92(1), 1–11 (2013)CrossRefGoogle Scholar
  33. 33.
    Asimakopoulou A.P. et al.: The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo. 22(3), 385–389 (2008)PubMedGoogle Scholar
  34. 34.
    Yamashita H. et al.: Mammalian and drosophila cells adhere to the laminin alpha4 LG4 domain through syndecans, but not glypicans. Biochem. J. 382(Pt 3), 933–943 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vieira L.A. et al.: The alga Bryothamnion seaforthii contains carbohydrates with antinociceptive activity. Braz. J. Med. Biol. Res. 37(7), 1071–1079 (2004)CrossRefPubMedGoogle Scholar
  36. 36.
    Fila G. et al.: In Vitro evaluation of dew-retting of flax by fungi from southern Europe. Ann. Appl. Biol. 138(3), 343–351 (2001)CrossRefGoogle Scholar
  37. 37.
    Götte M. et al.: miR-145-dependent targeting of junctional adhesion molecule a and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene. 29(50), 6569–6580 (2010)CrossRefPubMedGoogle Scholar
  38. 38.
    Sempere L.F. et al.: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 67(24), 11612–11620 (2007)CrossRefPubMedGoogle Scholar
  39. 39.
    Ibrahim S.A. et al.: Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS One. 8(12), e85737 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Götte M. et al.: An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer Res. 9(1), R8 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rubin J.S. et al.: Dissociation of heparan sulfate and receptor binding domains of hepatocyte growth factor reveals that heparan sulfate-c-met interaction facilitates signaling. J. Biol. Chem. 276(35), 32977–32983 (2001)CrossRefPubMedGoogle Scholar
  42. 42.
    Pasqualon T. et al.: Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells. Biochim. Biophys. Acta. 1863(4), 717–726 (2016)CrossRefPubMedGoogle Scholar
  43. 43.
    Vigetti D. et al.: Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J. Biol. Chem. 281(12), 8254–8263 (2006)CrossRefPubMedGoogle Scholar
  44. 44.
    Vigetti D. et al.: Analysis of hyaluronan synthase activity, in glycosaminoglycans, pp. 201–208. Springer, New York (2015)Google Scholar
  45. 45.
    Derksen P.W. et al.: Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes met signaling in multiple myeloma. Blood. 99(4), 1405–1410 (2002)CrossRefPubMedGoogle Scholar
  46. 46.
    Nikolova V. et al.: Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis. 30(3), 397–407 (2009)CrossRefPubMedGoogle Scholar
  47. 47.
    Roucourt B. et al.: Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25(4), 412–428 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gomes A.M., Stelling M.P., Pavão M.S.: Heparan sulfate and heparanase as modulators of breast cancer progression. Biomed. Res. Int. 2013, 852093 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Berninsone P. et al.: SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3738–3743 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dejima K. et al.: The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J. 23(7), 2215–2225 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hwang H.Y., Horvitz H.R.: The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc. Natl. Acad. Sci. U. S. A. 99(22), 14218–14223 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hascall V.C. et al.: The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. Matrix Biol. 35, 14–17 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vigetti D. et al.: Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J. Biol. Chem. 289(42), 28816–28826 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bret C. et al.: Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br. J. Haematol. 145(3), 350–368 (2009)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Surgical and Morphological SciencesUniversity of InsubriaVareseItaly
  2. 2.Department of Gynaecology and ObstetricsMuenster University HospitalMuensterGermany
  3. 3.Department of Radiotherapy-RadiooncologyUniversity Hospital MuensterMuensterGermany
  4. 4.Institute of Physiology IIUniversity of MuensterMuensterGermany
  5. 5.Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany

Personalised recommendations