Glycoconjugate Journal

, Volume 34, Issue 3, pp 405–410 | Cite as

19F labelled glycosaminoglycan probes for solution NMR and non-linear (CARS) microscopy

  • Marcelo A. Lima
  • Renan P. Cavalheiro
  • Gustavo M.Viana
  • Maria C.Z. Meneghetti
  • Timothy R. Rudd
  • Mark A. Skidmore
  • Andrew K. Powell
  • Edwin A. YatesEmail author
Original Article


Studying polysaccharide-protein interactions under physiological conditions by conventional techniques is challenging. Ideally, macromolecules could be followed by both in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a proper comparison of results over these different scales but, often, this is not feasible. The cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack groups that can be detected selectively in the biological milieu. The introduction of 19F labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the heparin-binding protein, antithrombin, employing 19F NMR spectroscopy is followed. Furthermore, the ability of 19F labelled GAGs to be imaged using CARS microscopy is demonstrated. 19F labelled GAGs enable both 19F NMR protein-GAG binding studies in solution at the molecular level and non-linear microscopy at a microscopic scale to be conducted on the same material, essentially free of background signals.


Heparin NMR 19Non-linear microscopy 



MAL and EAY gratefully acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. The authors also gratefully acknowledge Dr. Tony Curtis of Keele University for the provision of 19F NMR spectra. Dr. Andrew V. Stachulski of the Department of Chemistry, University of Liverpool is thanked for useful discussions and advice. The authors also thank Dr. Claudio Tormena of University of Campinas (UNICAMP), Brazil for provision of NMR facilities.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2016_9723_MOESM1_ESM.docx (179 kb)
Table S1 (DOCX 178 kb)
10719_2016_9723_MOESM2_ESM.docx (112 kb)
Table S2 (DOCX 112 kb)


  1. 1.
    Ori A., Wilkinson M.C., Fernig D.G.: A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J. Biol. Chem. 286(22), 19892–19904 (2011). doi: 10.1074/jbc.M111.228114 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Solari V., Borriello L., Turcatel G., Shimada H., Sposto R., Fernandez G.E., Asgharzadeh S., Yates E.A., Turnbull J.E., DeClerck Y.A.: MYCN-dependent expression of sulfatase-2 regulates neuroblastoma cell survival. Cancer Res. 74(21), 5999–6009 (2014). doi: 10.1158/0008-5472.CAN-13-2513 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xu R., Rudd T.R., Hughes A.J., Siligardi G., Fernig D.G., Yates E.A.: Analysis of the fibroblast growth factor receptor (FGFR) signalling network with heparin as coreceptor: evidence for the expansion of the core FGFR signalling network. The FEBS journal. 280(10), 2260–2270 (2013). doi: 10.1111/febs.12201 CrossRefPubMedGoogle Scholar
  4. 4.
    Guerrini M., Elli S., Mourier P., Rudd T.R., Gaudesi D., Casu B., Boudier C., Torri G., Viskov C.: An unusual antithrombin-binding heparin octasaccharide with an additional 3-O-sulfated glucosamine in the active pentasaccharide sequence. The Biochemical journal. 449(2), 343–351 (2013). doi: 10.1042/BJ20121309 CrossRefPubMedGoogle Scholar
  5. 5.
    Guglier S., Hricovini M., Raman R., Polito L., Torri G., Casu B., Sasisekharan R., Guerrini M.: Minimum FGF2 binding structural requirements of heparin and heparan sulfate oligosaccharides as determined by NMR spectroscopy. Biochemistry. 47(52), 13862–13869 (2008)Google Scholar
  6. 6.
    Viskov C., Elli S., Urso E., Gaudesi D., Mourier P., Herman F., Boudier C., Casu B., Torri G., Guerrini M.: Heparin dodecasaccharide containing two antithrombin-binding pentasaccharides: structural features and biological properties. J. Biol. Chem. 288(36), 25895–25907 (2013). doi: 10.1074/jbc.M113.485268 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wei Z., Deakin J.A., Blaum B.S., Uhrin D., Gallagher J.T., Lyon M.: Preparation of heparin/heparan sulfate oligosaccharides with internal N-unsubstituted glucosamine residues for functional studies. Glycoconj. J. 28(8–9), 525–535 (2011). doi: 10.1007/s10719-011-9352-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Pellegrini L., Burke D.F., von Delft F., Mulloy B., Blundell T.L.: Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 407(6807), 1029–1034 (2000). doi: 10.1038/35039551 CrossRefPubMedGoogle Scholar
  9. 9.
    Schlessinger J., Plotnikov A.N., Ibrahimi O.A., Eliseenkova A.V., Yeh B.K., Yayon A., Linhardt R.J., Mohammadi M.: Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell. 6(3), 743–750 (2000)CrossRefPubMedGoogle Scholar
  10. 10.
    Powell A.K., Yates E.A., Fernig D.G., Turnbull J.E.: Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology. 14(4), 17R–30R (2004). doi: 10.1093/glycob/cwh051 CrossRefPubMedGoogle Scholar
  11. 11.
    Madine J., Clayton J.C., Yates E.A., Middleton D.A.: Exploiting a (13)C-labelled heparin analogue for in situ solid-state NMR investigations of peptide-glycan interactions within amyloid fibrils. Organic & biomolecular chemistry. 7(11), 2414–2420 (2009). doi: 10.1039/b820808e CrossRefGoogle Scholar
  12. 12.
    Madine J., Pandya M.J., Hicks M.R., Rodger A., Yates E.A., Radford S.E., Middleton D.A.: Site-specific identification of an abeta fibril-heparin interaction site by using solid-state NMR spectroscopy. Angew. Chem. 51(52), 13140–13143 (2012). doi: 10.1002/anie.201204459 CrossRefGoogle Scholar
  13. 13.
    Danielson M.A., Falke J.J.: Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 25, 163–195 (1996). doi: 10.1146/ CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feeney J., McCormick J.E., Bauer C.J., Birdsall B., Moody C.M., Starkmann B.A., Young D.W., Francis P., Havlin R.H., Arnold W.D., Oldfield E.: 19F nuclear magnetic resonance chemical shifts of fluorine containing aliphatic amino acids in proteins: studies on lactobacillus casei Dihydrofolate reductase containing (2S,4S)-5-Fluoroleucine. J. Am. Chem. Soc. 118(36), 8700–8706 (1996). doi: 10.1021/ja960465i CrossRefGoogle Scholar
  15. 15.
    Chang Y.S., Jeong J.M., Lee Y.S., Kim H.W., Rai G.B., Lee S.J., Lee D.S., Chung J.K., Lee M.C.: Preparation of 18F-human serum albumin: a simple and efficient protein labeling method with 18F using a hydrazone-formation method. Bioconjug. Chem. 16(5), 1329–1333 (2005). doi: 10.1021/bc050086r CrossRefPubMedGoogle Scholar
  16. 16.
    Boutureira O., D'Hooge F., Fernandez-Gonzalez M., Bernardes G.J., Sanchez-Navarro M., Koeppe J.R., Davis B.G.: Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins. Chem. Commun. 46(43), 8142–8144 (2010). doi: 10.1039/c0cc01576h CrossRefGoogle Scholar
  17. 17.
    Boutureira O., Rodriguez M.A., Diaz Y., Matheu M.I., Castillon S.: Studies on the Zn(II)-mediated electrophilic selenocyclization and elimination of 3,4-O-isopropylidene-protected hydroxyalkenyl sulfides: synthesis of a 2-phenylselenenyl glycal. Carbohydr. Res. 345(8), 1041–1045 (2010). doi: 10.1016/j.carres.2010.03.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Klein-Seetharaman J., Getmanova E.V., Loewen M.C., Reeves P.J., Khorana H.G.: NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. Proc. Natl. Acad. Sci. U. S. A. 96(24), 13744–13749 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kitevski-LeBlanc J.L., Evanics F., Scott Prosser R.: Optimizing (1)(9)F NMR protein spectroscopy by fractional biosynthetic labeling. J. Biomol. NMR. 48(2), 113–121 (2010). doi: 10.1007/s10858-010-9443-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Kitevski-Leblanc, J.L., Hoang, J., Thach, W., Larda, S.T., Prosser, R.S.: (1)(9)F NMR studies of a desolvated near-native protein folding intermediate. Biochemistry 52(34), 5780–5789 (2013). doi: 10.1021/bi4010057
  21. 21.
    Ravindranathan A., Parks T.N., Rao M.S.: New isoforms of the chick glutamate receptor subunit GluR4: molecular cloning, regional expression and developmental analysis. Brain Res. Mol. Brain Res. 50(1–2), 143–153 (1997)CrossRefPubMedGoogle Scholar
  22. 22.
    Yates E.A., Santini F., Guerrini M., Naggi A., Torri G., Casu B.: 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr. Res. 294, 15–27 (1996)CrossRefPubMedGoogle Scholar
  23. 23.
    3.5 Carbodiimides. In: Felix, A., Moroder, L., Toniolo, C. (eds.) Houben-Weyl Methods of Organic Chemistry Vol. E 22a, 4th Edition Supplement, vol. E 22 a. Methoden der Organischen Chemie (Houben-Weyl). Georg Thieme Verlag, Stuttgart (2004)Google Scholar
  24. 24.
    Maker P.D., Terhune R.W.: Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137(3 A), A801–A818 (1965)CrossRefGoogle Scholar
  25. 25.
    Chaffin, J.C.T., Marshall, T.L.: Using a gas cell to characterize FT-IR air sensor performance. In:, pp. 69–78 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marcelo A. Lima
    • 1
    • 2
  • Renan P. Cavalheiro
    • 1
  • Gustavo M.Viana
    • 1
  • Maria C.Z. Meneghetti
    • 1
  • Timothy R. Rudd
    • 3
    • 2
  • Mark A. Skidmore
    • 2
    • 4
  • Andrew K. Powell
    • 5
    • 2
  • Edwin A. Yates
    • 2
    • 1
    • 4
    Email author
  1. 1.Department of BiochemistryUNIFESPSão PauloBrazil
  2. 2.Department of BiochemistryUniversity of LiverpoolLiverpoolUK
  3. 3.The National Institute of Biological Standards and Controls, Blanche LanePotters BarUK
  4. 4.School of Life SciencesKeele UniversityKeeleUK
  5. 5.School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations