Glycoconjugate Journal

, Volume 34, Issue 6, pp 693–699 | Cite as

Changes of glycoconjugate expression profiles during early development

  • Kazuko Handa
  • Sen-itiroh HakomoriEmail author


A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early biochemical studies. Later studies of virus-transformed fibroblasts demonstrated the association of GSL expression profiles with cell phenotypes. Changes of GSL expression profile were observed during mammalian embryogenesis. Cell surface molecules expressed on embryos in a stage-specific manner appeared to play key roles in regulation of cell-cell interaction and cell sorting during early development. Many mAbs showing stage-specific reactivity with mouse embryos were shown to recognize carbohydrate epitopes. Among various stage-specific embryonic antigens (SSEAs), SSEA-1 was found to react with neolacto-series GSL Lex, while SSEA-3 and SSEA-4 reacted with globo-series Gb5 and monosialyl-Gb5, respectively. GSL expression during mouse early development was shown to shift rapidly from globo-series to neolacto/lacto-series, and then to ganglio-series. We found that multivalent Lex caused decompaction of mouse embryos, indicating a functional role of Lex epitope in the compaction process. Autoaggregation of mouse embryonal carcinoma (EC) F9 cells provided a useful model of the compaction process. We showed that Lex-Lex interaction, a novel type of molecular interavction termed carbohydrate-carbohydrate interaction (CCI), was involved in cell aggregation. Similar shifting of GSL expression profiles from globo-series and neolacto/lacto-series to ganglio-series was observed during differentiation of human EC cells and embryonic stem (ES) cells, reflecting the essential role of cell surface glycoconjugates in early development.


Glycoconjugate Glycosphingolipid Embryonal carcinoma Embryonic stem cell Stage-specific embryonic antigen Embryogenesis 



Original studies by our group described here were supported by National Institutes of Health R01 CA20026, GM23100, CA080054, National Cancer Institute Outstanding Investigator Grant CA42505 (to S.H.), and The Biomembrane Institute. The authors are grateful to Dr. S. Anderson for English editing of the manuscript, and to Mylinh Bui for secretarial assistance.


  1. 1.
    Yamakawa T., Suzuki S.: The chemistry of lipids of posthemolytic residue or stroma of erythorcytes: I. Concorning the eter-insoluble lipis of lyophilized horse blood serum. J. Biol. Chem. 38, 199–212 (1951)Google Scholar
  2. 2.
    Kuhn R., Wiegandt H.: Die konstitutionen der ganglio-N-tetraose und des ganlioside GI. Chem. Ber. 96, 866–880 (1963)CrossRefGoogle Scholar
  3. 3.
    Hakomori S.: Chemistry of glycosphingolipids. In: Kanfer J.N., Hakomori S. (eds.) Sphingolipid biochemistry, vol. 3, pp. 1–164. Plenum Press, New York (1983)Google Scholar
  4. 4.
    Iseki S., Sakai T.: Artificial transformartion of O antigen in Salmonella E group: II. Antigen-transforming factor in bacilli in supgroup E2. Proc. Jpn. Acad. Sci. 29, 127–131 (1953)Google Scholar
  5. 5.
    Uetake H., Luria S.E., Burrous J.W.: Conversion of somatic antigens in Salmonella by phage infection leading to lysis of lysogeny. Virology. 5, 68–91 (1958)CrossRefPubMedGoogle Scholar
  6. 6.
    Uchida T., Robbins P.W., Luria S.E.: Analysis of the serologic determinant groups of the Salmonella E-group O-antigens. Biochemistry. 2, 663–668 (1963)CrossRefPubMedGoogle Scholar
  7. 7.
    Hakomori S., Murakami W.T.: Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. Natl. Acad. Sci. U. S. A. 59, 254–261 (1968)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mora P.T., Brady R.O., Bradley R.M., McFarland V.W.: Gangliosides in DNA virus-transformed and spontaneously transformed tumorigenic mouse cell lines. Proc. Natl. Acad. Sci. U. S. A. 63, 1290–1296 (1969)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hakomori S.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim. Biophys. Acta. 1780(3), 325–346 (2008). doi: 10.1016/j.bbagen.2007.08.015 CrossRefPubMedGoogle Scholar
  10. 10.
    Martin G.R.: Teratocarcinoma stem cells provide a model system for the study of early mammalian development in vitro. In: Muramatsu T., Gachelin G., Moscona A.A., Ikawa Y. (eds.) Teratocarcinoma and embryonic cell interactions, pp. 3–17. Academic Press, Tokyo (1982)Google Scholar
  11. 11.
    Stern P.L., Martin G.R., Evans M.J.: Cell surface antigens of clonal teratocarcinoma cells at various stages of differentiation. Cell. 6, 455–465 (1975)CrossRefGoogle Scholar
  12. 12.
    Jacob F.: Mouse teratocarcinoma and embryonic antigens. Immunol. Rev. 33, 3–32 (1977)CrossRefPubMedGoogle Scholar
  13. 13.
    Kohler G., Milstein C.: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256(5517), 495–497 (1975)CrossRefPubMedGoogle Scholar
  14. 14.
    Solter D., Knowles B.B.: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. U. S. A. 75(11), 5565–5569 (1978)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hakomori S., Nudelman E., Levery S., Solter D., Knowles B.B.: The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adenocarcinoma: a preliminary note. Biochem. Biophys. Res. Commun. 100(4), 1578–1586 (1981)CrossRefPubMedGoogle Scholar
  16. 16.
    Hounsell E.F., Gooi H.C., Feizi T.: The monoclonal antibody anti-SSEA-1 discriminates between fucosylated type 1 and type 2 blood group chains. FEBS Lett. 131(2), 279–282 (1981)CrossRefPubMedGoogle Scholar
  17. 17.
    Gooi H.C., Feizi T., Kapadia A., Knowles B.B., Solter D., Evans M.J.: Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature. 292(5819), 156–158 (1981)CrossRefPubMedGoogle Scholar
  18. 18.
    Kannagi R., Nudelman E., Levery S.B., Hakomori S.: A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-l. J. Biol. Chem. 257(24), 4865–4874 (1982)Google Scholar
  19. 19.
    Kannagi R., Cochran N.A., Ishigami F., Hakomori S., Andrews P.W., Knowles B.B., Solter D.: Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2(12), 2355–2361 (1983)PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kannagi R., Levery S.B., Ishigami F., Hakomori S., Shevinsky L.H., Knowles B.B., Solter D.: New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J. Biol. Chem. 258(14), 8934–8942 (1983)PubMedGoogle Scholar
  21. 21.
    Shevinsky L.H., Knowles B.B., Damjanov I., Solter D.: Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell. 30(3), 697–705 (1982)CrossRefPubMedGoogle Scholar
  22. 22.
    Handyside A.H.: Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J. Embryol. Exp. Morpholog. 60, 99–116 (1980)Google Scholar
  23. 23.
    Fox N.W., Damjanov I., Knowles B.B., Solter D.: Stage-specific embryonic antigen 3 as a marker of visceral extraembryonic endoderm. Dev. Biol. 103(1), 263–266 (1984). doi: 10.1016/0012-1606(84)90028-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Willison K.R., Stern P.L.: Expression of a Forssman antigenic specificity in the preimplantation mouse embryo. Cell. 14(4), 785–793 (1978)CrossRefPubMedGoogle Scholar
  25. 25.
    Abe K., Hakomori S., Ohshiba S.: Differential expression of difucosyl type 2 chain (LeY) defined by monoclonal antibody AH6 in different locations of colonic epithelia, various histological types of colonic polyps, and adenocarcinomas. Cancer Res. 46(5), 2639–2644 (1986)PubMedGoogle Scholar
  26. 26.
    Fenderson B.A., Holmes E.H., Fukushi Y., Hakomori S.: Coordinate expression of X and Y haptens during murine embryogenesis. Dev. Biol. 114(1), 12–21 (1986)CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu Z.M., Kojima N., Stroud M.R., Hakomori S., Fenderson B.A.: Monoclonal antibody directed to Le(y) oligosaccharide inhibits implantation in the mouse. Biol. Reprod. 52(4), 903–912 (1995)CrossRefPubMedGoogle Scholar
  28. 28.
    Fenderson B.A., Nichols E.J., Clausen H., Hakomori S.I.: A monoclonal antibody defining a binary N-acetyllactosaminyl structure in lactoisooctaosylceramide (IV6Gal beta 1—-4GlcNAcnLc6): a useful probe for determining differential glycosylation patterns between normal and transformed human fibroblasts. Mol. Immunol. 23(7), 747–754 (1986)CrossRefPubMedGoogle Scholar
  29. 29.
    Fenderson B.A., Eddy E.M., Hakomori S.: The blood group I antigen defined by monoclonal antibody C6 is a marker of early mesoderm during murine embryogenesis. Differentiation; research in biological diversity. 38(2), 124–133 (1988)CrossRefPubMedGoogle Scholar
  30. 30.
    Takeichi M.: Cadherins: a molecular family essential for selective cell-cell adhesion and animal morphogenesis. Trends Genet. 3, 213–217 (1987)CrossRefGoogle Scholar
  31. 31.
    Lee S., Gilula N.B., Warner A.E.: Gap junctional communication and compaction during preimplantation stages of mouse development. Cell. 51(5), 851–860 (1987)CrossRefPubMedGoogle Scholar
  32. 32.
    Fenderson B.A., Zehavi U., Hakomori S.: A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J. Exp. Med. 160(5), 1591–1596 (1984)CrossRefPubMedGoogle Scholar
  33. 33.
    Bird J.M., Kimber S.J.: Oligosaccharides containing fucose linked alpha(1-3) and alpha(1-4) to N-acetylglucosamine cause decompaction of mouse morulae. Dev. Biol. 104(2), 449–460 (1984)CrossRefPubMedGoogle Scholar
  34. 34.
    Rastan S., Thorpe S.J., Scudder P., Brown S., Gooi H.C., Feizi T.: Cell interactions in preimplantation embryos: evidence for involvement of saccharides of the poly-N-acetyllactosamine series. J. Embryol. Exp. Morpholog. 87, 115–128 (1985)Google Scholar
  35. 35.
    Ducibella T., Anderson E.: Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev. Biol. 47(1), 45–58 (1975)CrossRefPubMedGoogle Scholar
  36. 36.
    Hyafil F., Morello D., Babinet C., Jacob F.: A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell. 21(3), 927–934 (1980)CrossRefPubMedGoogle Scholar
  37. 37.
    Ogou S., Okada T.S., Takeichi M.: Cleavage stage mouse embryos share a common cell adhesion system with teratocarcinoma cells. Dev. Biol. 92(2), 521–528 (1982)CrossRefPubMedGoogle Scholar
  38. 38.
    Rosenman, S.J., Fenderson, B.A., Hakomori, S.: The Role of Glycoconjugates in Embryogenesis. In: Ohyama, M., Muramatsu, T. (eds.) Glycoconjugates in Medicine. Pp. 43–50. (1988)Google Scholar
  39. 39.
    Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S.: Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J. Biol. Chem. 264(16), 9476–9484 (1989)PubMedGoogle Scholar
  40. 40.
    Kojima N., Fenderson B.A., Stroud M.R., Goldberg R.I., Habermann R., Toyokuni T., Hakomori S.: Further studies on cell adhesion based on Le(x)-Le(x) interaction, with new approaches: embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le(x) expression. Glycoconj. J. 11(3), 238–248 (1994)CrossRefPubMedGoogle Scholar
  41. 41.
    Geyer A., Gege C., Schmidt R.R.: Calcium-dependent carbohydrate-carbohydrate recognition between Lewis(X) blood group antigens. Angew. Chem. Int. Ed. Eng. 39(18), 3245–3249 (2000)CrossRefGoogle Scholar
  42. 42.
    Tromas C., Rojo J., de la Fuente J.M., Barrientos A.G., Garcia R., Penades S.: Adhesion forces between Lewis(X) determinant antigens as measured by atomic force microscopy. Angew. Chem. Int. Ed. Eng. 40(16), 3052–3055 (2001). doi: 10.1002/1521-3773(20010817)40:16<3052::aid-anie3052>;2-q CrossRefGoogle Scholar
  43. 43.
    Gourier C., Pincet F., Perez E., Zhang Y., Zhu Z., Mallet J.M., Sinay P.: The natural Lewis(X)-bearing lipids promote membrane adhesion: influence of ceramide on carbohydrate-carbohydrate recognition. Angew. Chem. Int. Ed. Eng. 44(11), 1683–1687 (2005). doi: 10.1002/anie.200461224 CrossRefGoogle Scholar
  44. 44.
    Song Y., Withers D.A., Hakomori S.: Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB. J. Biol. Chem. 273(5), 2517–2525 (1998)CrossRefPubMedGoogle Scholar
  45. 45.
    Kojima N., Hakomori S.: Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J. Biol. Chem. 266(26), 17552–17558 (1991)PubMedGoogle Scholar
  46. 46.
    Otsuji E., Park Y., Tashiro K., Kojima N., Toyokuni T., Hakomori S.: Inhibition of b16 melanoma metastasis by administration of g(m3)- or gg3- liposomes - blocking adhesion of melanoma-cells to endothelial-cells (antiadhesion therapy) via inhibition of g(m3)-gg3cer or g(m3)-laccer interaction. Int. J. Oncol. 6(2), 319–327 (1995)PubMedGoogle Scholar
  47. 47.
    Rojo J., Diaz V., de la Fuente J.M., Segura I., Barrientos A.G., Riese H.H., Bernad A., Penades S.: Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem: a European journal of chemical biology. 5(3), 291–297 (2004). doi: 10.1002/cbic.200300726 CrossRefPubMedGoogle Scholar
  48. 48.
    Yoon S.J., Nakayama K., Hikita T., Handa K., Hakomori S.I.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc. Natl. Acad. Sci. U. S. A. 103(50), 18987–18991 (2006). doi: 10.1073/pnas.0609281103 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Boggs J.M., Gao W., Hirahara Y.: Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate-carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochim. Biophys. Acta. 1780(3), 445–455 (2008). doi: 10.1016/j.bbagen.2007.10.015 CrossRefPubMedGoogle Scholar
  50. 50.
    Ferrara C., Grau S., Jager C., Sondermann P., Brunker P., Waldhauer I., Hennig M., Ruf A., Rufer A.C., Stihle M., Umana P., Benz J.: Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc. Natl. Acad. Sci. U. S. A. 108(31), 12669–12674 (2011). doi: 10.1073/pnas.1108455108 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Handa K., Hakomori S.I.: Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj. J. 29(8–9), 627–637 (2012). doi: 10.1007/s10719-012-9380-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Andrews P.W., Damjanov I., Simon D., Banting G.S., Carlin C., Dracopoli N.C., Fogh J.: Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab. Invest. 50(2), 147–162 (1984)PubMedGoogle Scholar
  53. 53.
    Andrews P.W.: Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103(2), 285–293 (1984)CrossRefPubMedGoogle Scholar
  54. 54.
    Lee V.M., Andrews P.W.: Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J. Neurosci. 6(2), 514–521 (1986)PubMedGoogle Scholar
  55. 55.
    Fenderson B.A., Andrews P.W., Nudelman E., Clausen H., Hakomori S.: Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev. Biol. 122(1), 21–34 (1987)CrossRefPubMedGoogle Scholar
  56. 56.
    Chen C., Fenderson B.A., Andrews P.W., Hakomori S.: Glycolipid glycosyltransferases in human embryonal carcinoma cells during retinoic acid induced differentiation. Biochemistry. 28(5), 2229–2238 (1989)CrossRefPubMedGoogle Scholar
  57. 57.
    Fenderson B.A., Eddy E.M., Hakomori S.: Glycoconjugate expression during embryogenesis and its biological significance. BioEssays: news and reviews in molecular, cellular and developmental biology. 12(4), 173–179 (1990)CrossRefGoogle Scholar
  58. 58.
    Liang Y.-J., Kuo H.-H., Lin C.-H., Chen Y.-Y., Yang B.-C., Cheng Y.-Y., Yu A.L., Khoo K.-H., Yu J.: Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 107(52), 22564–22569 (2010). doi: 10.1073/pnas.1007290108 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Biomembrane ResearchPacific Northwest Research InstituteSeattleUSA
  2. 2.Departments of Pathobiology and Global HealthUniversity of WashingtonSeattleUSA

Personalised recommendations