Advertisement

Glycoconjugate Journal

, Volume 33, Issue 5, pp 809–818 | Cite as

Multivalent sialylation of β-thio-glycoclusters by Trypanosoma cruzi trans sialidase and analysis by high performance anion exchange chromatography

  • Rosalía AgustíEmail author
  • María Emilia Cano
  • Alejandro J. Cagnoni
  • José Kovensky
  • Rosa M. de Lederkremer
  • María Laura UhrigEmail author
Original Article

Abstract

The synthesis of multivalent sialylated glycoclusters is herein addressed by a chemoenzymatic approach using the trans-sialidase of Trypanosoma cruzi (TcTS). Multivalent β-thio-galactopyranosides and β-thio-lactosides were used as acceptor substrates and 3′-sialyllactose as the sialic acid donor. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was shown to be an excellent technique for the analysis of the reaction products. Different eluting conditions were optimized to allow the simultaneous resolution of the sialylated species, as well as their neutral precursors. The TcTS efficiently transferred sialyl residues to di, tri, tetra and octa β-thiogalactosides. In the case of an octavalent thiolactoside, up to six polysialylated compounds could be resolved. Preparative sialylation reactions were performed using the tetravalent and octavalent acceptor substrates. The main sialylated derivatives could be unequivocally assigned by MALDI mass spectrometry. Inhibition of the transfer to the natural substrate, N-acetyllactosamine, was also studied. The octalactoside caused 82 % inhibition of sialic acid transfer when we used equimolar concentrations of donor, acceptor and inhibitor.

Keywords

T. cruzi trans-sialidase β-galactopyranosides Multivalent glycoclusters Sialic acid HPAEC MALDI-TOF Enzymatic sialylation 

Notes

Acknowledgments

We thank O. Campetella and his group from Universidad Nacional General San Martín (UNSAM) Argentina, for the kind gift of trans-sialidase from T. cruzi, and the personal of CEQUIBIEM (CONICET-UBA) for the MALDI experiments. Support for this work from the National Agency for Promotion of Science and Technology, ANPCyT, the National Research Council CONICET and the University of Buenos Aires is gratefully acknowledged. María E. Cano is a fellow from CONICET. Rosalía Agustí, María Laura Uhrig and Rosa M. de Lederkremer are research members of CONICET.

Supplementary material

10719_2016_9676_MOESM1_ESM.pdf (491 kb)
ESM 1 (PDF 491 kb)

References

  1. 1.
    Chabre Y.M., Roy R.: Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 63, 165–393 (2010)CrossRefPubMedGoogle Scholar
  2. 2.
    Deniaud D., Julienne K., Gouin S.G.: Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem. 9, 966–979 (2011)CrossRefPubMedGoogle Scholar
  3. 3.
    Gouin S.G., Vanquelef E., García Fernández J.M., Ortiz Mellet C., Dupradeau F.-Y., Kovensky J.: Multi-Mannosides based on a carbohydrate scaffold: synthesis, force field development, molecular dynamics studies, and binding affinities for lectin Con A. J. Org. Chem. 72, 9032–9045 (2007)Google Scholar
  4. 4.
    Gouin, S. G., García Fernández, J. M., Vanquelef, E., Dupradeau, F.-Y., Salomonsson, E., Leffler, H., Ortega-Muñoz, M., Nilsson, U. J., Kovensky, J.: Multimeric Lactoside “click clusters” as tools to investigate the effect of linker length in specific interactions with peanut lectin, galectin-1, and −3. Chem Bio Chem 11, 1430–1442 (2010)Google Scholar
  5. 5.
    Cagnoni A.J., Kovensky J., Uhrig M.L.: Design and synthesis of hydrolytically stable multivalent ligands bearing thiodigalactoside analogues for peanut lectin and human galectin-3 binding. J. Org. Chem. 79, 6456–6467 (2014)Google Scholar
  6. 6.
    Schmid S., Mishra A., Wunderlin M., Bäuerle P.: Mannose-functionalized dendritic oligothiophenes: synthesis, characterizations and studies on their interaction with Concanavalin A. Org. Biomol. Chem. 11, 5656–5665 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    Gómez-García M., Benito J.M., Gutiérrez-Gallego R., Maestre A., Ortiz Mellet C., García Fernández J.M., Jiménez Blanco J.L.: Comparative studies on lectin–carbohydrate interactions in low and high density homo-and heteroglycoclusters. Org. Biomol. Chem. 8, 1849–1860 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    Kushwaha D., Dwivedi P., Kuanar S.K., Tiwari V.K.: Click reaction in carbohydrate chemistry: recent developments and future perspective. Curr. Org. Synth. 10, 90–135 (2013)CrossRefGoogle Scholar
  9. 9.
    Bielski, R., Witczak, Z.: Paradigm and advantage of carbohydrate click chemistry strategy for future decoupling. In John Wiley and Sons (eds.) Click Chemistry in Glycoscience, New developments and strategies, pp. 3–30, Wiley, Hoboken (2013)Google Scholar
  10. 10.
    Wang G.N., André S., Gabius H.J., Murphy P.V.: Bi- to tetravalent glycoclusters: synthesis, structure–activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org. Biomol. Chem. 10, 6893–6907 (2012)CrossRefPubMedGoogle Scholar
  11. 11.
    Ortiz Mellet, C., Méndez-Ardoy, A., García Fernández, J. M.: Click Multivalent Glycomaterials: Glycoclusters, Glycodendrimers, Glycopolymers, Hybrid Glycomaterials, and Glycosurfaces. In: John Wiley and Sons (eds.) Click Chemistry in Glycoscience, New developments and strategies, pp. 143–182, Wiley, Hoboken (2013)Google Scholar
  12. 12.
    Astruc D., Liang L., Rapakousiou A., Ruiz J.: Click dendrimers and Triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Acc. Chem. Res. 45, 630–640 (2012)CrossRefPubMedGoogle Scholar
  13. 13.
    Campo V.L., Ivanova I.M., Carvalho I., Lopes C.D., Carneiro Z.A., Saalbach G., Schenkman S., da Silva Santana J., Nepogodiev S.A., Field R.A.: Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion. Tetrahedron. 71, 7344–7353 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Varki A.: Sialic acids as ligands in recognition phenomena. FASEB J. 11, 248–255 (1997)PubMedGoogle Scholar
  15. 15.
    Varki A., Gagneux P.: Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O'Reilly M.K., Paulson J.C.: Multivalent ligands for siglecs. Methods Enzymol. 478, 343–363 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Papp I., Sieben C., Ludwig K., Roskamp M., Böttcher C., Schlecht S., Herrmann A., Haag R.: Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 6, 2900–2906 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    Johansson S.M.C., Nilsson E.C., Elofsson M., Ahlskog N., Kihlberg J., Arnberg N.: Multivalent sialic acid conjugates inhibit adenovirus type 37 from binding to and infecting human corneal epithelial cells. Antivir. Res. 73, 92–100 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    Meunier S.J., Roy R.: Polysialosides scaffolded on p-Tert-butylcalix[4]arene. Tetrahedron Lett. 37, 5469–5472 (1996)CrossRefGoogle Scholar
  20. 20.
    Zanini D., Roy R.: Synthesis of new α-Thiosialodendrimers and their binding properties to the sialic acid specific lectin from Limax flavus. J. Am. Chem. Soc. 119, 2088–2095 (1997)CrossRefGoogle Scholar
  21. 21.
    Marra A., Moni L., Pazzi D., Corallini A., Bridi D., Dondoni A.: Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org. Biomol. Chem. 6, 1396–1409 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Tollas A., Bereczki I., Borbás A., Vanderlinden E., Naesens L., Herczergh P.: Synthesis of a cluster-forming sialylthio-D-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase. Bioorg. Med. Chem. Lett. 24, 2420–2423 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    Oka H., Onagam T., Koyama T., Guo C.-T., Suzuki Y., Esumi Y., Hatano K., Terunuma D., Matsuoka K.: Syntheses and biological evaluations of carbosilane dendrimers uniformly functionalized with sialyl alpha(2 → 3) lactose moieties as inhibitors for human influenza viruses. Bioorg. Med. Chem. 17, 5465–5475 (2009)CrossRefPubMedGoogle Scholar
  24. 24.
    Waldmann M., Jirmann R., Hoelscher K., Wienke M., Niemeyer F.C., Rehders D., Meyer B.: A Nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian influenza. J. Am. Chem. Soc. 136, 783–788 (2014)CrossRefPubMedGoogle Scholar
  25. 25.
    Schenkman S., Jiang M.S., Hart G.W., Nussenzweig V.: A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 65, 1117–1125 (1991)CrossRefPubMedGoogle Scholar
  26. 26.
    Frasch A.C.C.: Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today. 16, 282–286 (2000)CrossRefPubMedGoogle Scholar
  27. 27.
    Ferrero-Garcia M.A., Trombetta S.E., Sanchez D.O., Reglero A., Frasch A.C.C., Parodi A.J.: The action of Trypanosoma cruzi trans-sialidase on glycolipids and glycoproteins. Eur. J. Biochem. 213, 765–771 (1993)CrossRefPubMedGoogle Scholar
  28. 28.
    Agusti R., Páris G., Ratier L., Frasch A.C.C., Lederkremer R.M.: Lactose derivates are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology. 14, 659–670 (2004)CrossRefPubMedGoogle Scholar
  29. 29.
    Neres J., Bryce R.A., Douglas K.T.: Rational drug design in parasitology: trans-sialidase as a case study for Chagas' disease. Drug Discov. Today. 13, 110–117 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    Schenkman S., Eichinger D., Pereira M.E.A., Nussenzweig V.: Structural and functional properties of Trypanosoma trans-sialidase. Annu. Rev. Microbiol. 48, 499–523 (1994)CrossRefPubMedGoogle Scholar
  31. 31.
    Campo V.L., Carvalho I., Da Silva C.H.T.P., Schenkman S., Hill L., Nepogodieva S.A., Field R.A.: Cyclooligomerisation of azido-alkyne-functionalised sugars: synthesis of 1,6-linked cyclic pseudo-galactooligosaccharides and assessment of their sialylation by Trypanosoma cruzi trans-sialidase. Chem. Sci. 1, 507–514 (2010)CrossRefGoogle Scholar
  32. 32.
    Neres J., Buschiazzo A., Alzari P.M., Walsh L., Douglas K.T.: Continuous fluorimetric assay for high-throughput screening of inhibitors of trans-sialidase from Trypanosoma cruzi. Anal. Biochem. 357, 302–304 (2006)CrossRefPubMedGoogle Scholar
  33. 33.
    Agustí R., Mendoza V.M., Gallo-Rodriguez C., Lederkremer R.M.: Selective sialylation of 2,3-di-O-(β-D-galactopyranosyl)-D-galactose catalyzed by Trypanosoma cruzi trans-sialidase. Tetrahedron-Asymmetry. 16, 541–551 (2005)CrossRefGoogle Scholar
  34. 34.
    Mendoza V.M., Agusti R., Gallo-Rodriguez C., Lederkremer R.M.: Synthesis of the O-linked pentasaccharide in glycoproteins of Trypanosoma cruzi and selective sialylation by recombinant trans-sialidase Carbohydr. Res. 341, 1488–1497 (2006)Google Scholar
  35. 35.
    Agusti R., Giorgi M.E., Mendoza V.M., Kashiwagi G., Lederkremer R.M., Gallo-Rodríguez C.: Synthesis of the O-linked hexasaccharide containing β-D-Galp-(1 → 2)-D-Galf in Trypanosoma cruzi mucins. Differences on sialylation by trans-sialidase of the two constituent hexasaccharides. Bioorg. Med. Chem. 23, 1213–1222 (2015)CrossRefPubMedGoogle Scholar
  36. 36.
    Cano M.E., Agusti R., Cagnoni A.J., Tesoriero M.F., Kovensky J., Uhrig M.L., Lederkremer R.M.: Synthesis of divalent ligands of β-thio- and β-N-galactopyranosides and related lactosides and their evaluation as substrates and inhibitors of Trypanosoma cruzi trans-sialidase. Beilstein J. Org. Chem. 10, 3073–3086 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Agusti R., Giorgi M.E., Lederkremer R.M.: The trans-sialidase from Trypanosoma cruzi efficiently transfers alpha-(2 → 3)-linked N-glycolylneuraminic acid to terminal beta-galactosyl units. Carbohydr. Res. 342, 2465–2469 (2007)CrossRefPubMedGoogle Scholar
  38. 38.
    Cagnoni A.J., Varela O., Gouin S.G., Kovensky J., Uhrig M.L.: Synthesis of Multivalent Glycoclusters from 1-Thio-β-D-galactose and Their Inhibitory Activity against the β-Galactosidase from E. coli. J. Org. Chem. 76, 3064–3077 (2011)Google Scholar
  39. 39.
    Cagnoni, A. J., Varela, O., Uhrig, M. L., Kovensky, J.: Efficient synthesis of thiolactoside glycoclusters by ruthenium-catalyzed cycloaddition reaction of disubstituted alkynes on carbohydrate scaffolds. Eur. J. Org. Chem. 972–983 (2013)Google Scholar
  40. 40.
    Rohrer, J.: Analysis of Carbohydrates by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD). Thermo Scientific Technical Note N° 20 (2013)Google Scholar
  41. 41.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rosalía Agustí
    • 1
    Email author
  • María Emilia Cano
    • 1
  • Alejandro J. Cagnoni
    • 1
  • José Kovensky
    • 2
  • Rosa M. de Lederkremer
    • 1
  • María Laura Uhrig
    • 1
    Email author
  1. 1.CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A)-CNRS UMR 7478Université de Picardie Jules VerneAmiens CedexFrance

Personalised recommendations