Glycoconjugate Journal

, Volume 33, Issue 2, pp 181–188 | Cite as

Metabolic fate of milk glycosaminoglycans in breastfed and formula fed newborns

  • Francesca Maccari
  • Veronica Mantovani
  • Orazio Gabrielli
  • Antonio Carlucci
  • Lucia Zampini
  • Tiziana Galeazzi
  • Fabio Galeotti
  • Giovanni V. Coppa
  • Nicola VolpiEmail author
Original Article


In this study, the content, structure and residual percentages of glycosaminoglycans (GAGs) in the feces of seven breastfed newborns after ingesting a known amount of milk were studied. A comparison was made with five newborns fed with formula milk. Characterization of GAGs from milk and feces samples was performed according to previous methodology. Compared to the ingested GAGs present in milk, residual feces GAGs of breastfed newborns were <0.4 %, contrary to formula milk fed children, where the residues were ~4 %. As a consequence, >99 % of human milk GAGs are utilized as opposed to ~96 % of formula milk. Hyaluronic acid utilization was found to be fairly similar contrary to chondroitin sulfate/dermatan sulfate and heparan sulfate, which were found to be ~10–18 times lower in formula milk fed children. Our new results further demonstrate that the elevated content of human milk GAGs passes undigested through the entire digestive system of newborns, possibly protecting the infant from infections. In the distal gastrointestinal tract, these complex macromolecules are catabolized by a cohort of bacterial enzymes and constituent monosaccharides/oligosaccharides utilized for further metabolic purposes potentially useful for bacteria metabolism or internalized by intestinal cells. Thanks to their elevated structural heterogeneity, milk GAGs are used differently depending on their distinct primary structure. Finally, a different utilization and availability was observed for human milk GAGs compared to formula milk due to their various composition and structural heterogeneity.


Newborn feces Human milk Glycosaminoglycans Hyaluronic acid Chondroitin sulfate Heparan sulfate Breastfeeding 



N.V. developed the applied methodologies. F.M., V.M., L.Z., T.G. and F.G. performed the experimental procedures and analyses. A.C. collected the feces samples. N.V., G.V.C. and O.G. designed and developed the experimental design, performed data analysis and wrote the manuscript.

All authors reviewed and approved the study.

Compliance with ethical standards

Conflicts of interest

We declare that we have no conflicts of interest.

Grant support



  1. 1.
    Hamosh M.: Bioactive factors in human milk. Pediatr. Clin. N. Am. 48, 69–86 (2001)CrossRefGoogle Scholar
  2. 2.
    Morrow A.L., Ruiz-Palacios, Jiang X.: Newburg DS. Human milk glycans that inhibit pathogen binding protect breast-fed infants against infectious diarrhea. J. Nutr. 135, 1304–1307 (2005)PubMedGoogle Scholar
  3. 3.
    Hanson L.A.: Feeding and infant development breast-feeding and immune function. Proc. Nutr. Soc. 66, 384–396 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    Newburg D.S.: Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J. Anim. Sci. 87, 26–34 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    Newburg D.S., Linhardt R.J., Ampofo S.A., Yolken R.H.: Human milk glycosaminoglycans inhibit HIV glycoprotein gp120 binding to its host cell CD4 receptor. J Nutrition. 125, 419–424 (1995)Google Scholar
  6. 6.
    Coppa G.V., Gabrielli O., Buzzega D., Zampini L., Galeazzi T., Maccari F., Bertino E., Volpi N.: Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology. 21, 295–303 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    Coppa G.V., Gabrielli O., Zampini L., Galeazzi T., Maccari F., Buzzega D., Galeotti F., Bertino E., Volpi N.: Glycosaminoglycan content in term and preterm milk during the first month of lactation. Neonatology. 101, 74–76 (2012)CrossRefPubMedGoogle Scholar
  8. 8.
    Coppa G.V., Gabrielli O., Zampini L., Bertino E., Volpi N.: Human milk glycosaminoglycans as possible bioactive substances for the breastfed newborn. Breastfeed. Med. 8, 227 (2013)CrossRefPubMedGoogle Scholar
  9. 9.
    Coscia A., Peila C., Bertino E., Coppa G.V., Moro G.E., Gabrielli O., Zampini L., Galeazzi T., Maccari F., Volpi N.: Effect of holder pasteurisation on human milk glycosaminoglycans. J. Pediatr. Gastroenterol. Nutr. 60, 127–130 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    Jackson R.J., Busch S.J., Cardin A.D.: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71, 481–539 (1991)PubMedGoogle Scholar
  11. 11.
    Gesslbauer B., Theuer M., Schweiger D., Adage T., Kungl A.J.: New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics. 10, 77–95 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    Gandhi N.S., Mancera R.L.: Heparin/heparan sulphate-based drugs. Drug Discov. Today. 15, 1058–1069 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    Coppa GV, Facinelli B, Magi G, Marini E, Zampini L, Mantovani V, Galeazzi T, Padella L, Marchesiello RL, Santoro L, Coscia A, Peila C, Volpi N, Gabrielli O. Human Milk Glycosaminoglycans Inhibit in vitro the Adhesion of Escherichia coli and Salmonella fyris to Human Intestinal Cells. Ped Res In Press (2016).Google Scholar
  14. 14.
    Hill D.R., Rho H.K., Kessler S.P., Amin R., Homer C.R., McDonald C., Cowman M.K., de la Motte C.A.: Human milk hyaluronan enhances innate defense of the intestinal epithelium. J. Biolumin. Chemilumin. 288, 29090–29104 (2013)Google Scholar
  15. 15.
    Volpi N.: High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal. Biochem. 397, 12–23 (2010)CrossRefPubMedGoogle Scholar
  16. 16.
    Volpi N., Galeotti F., Yang B., Linhardt R.J.: Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection. Nat. Protoc. 9, 541–558 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    Galeotti F., Volpi N.: Online reverse phase-high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry separation and characterization of heparan sulfate, heparin, and low-molecular weight-heparin disaccharides derivatized with 2-aminoacridone. Anal. Chem. 83, 6770–6777 (2011)CrossRefPubMedGoogle Scholar
  18. 18.
    Barthe L., Woodley J., Lavit M., Przybylski C., Philibert C., Houin G.: In vitro intestinal degradation and absorption of chondroitin sulfate, a glycosaminoglycan drug. Arzneimittelforschung. 54, 286–292 (2004)PubMedGoogle Scholar
  19. 19.
    Larsen A.K., Lund D.P., Langer R., Folkman J.: Oral heparin results in the appearance of heparin fragments in the plasma of rats. Proc. Natl. Acad. Sci. U. S. A. 83, 2964–2968 (1986)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dawes J., Hodson B.A., Pepper D.S.: The absorption, clearance and metabolic fate of dermatan sulphate administered to man. Studies using a radioiodinated derivative. Thromb Haemost. 62, 945–949 (1989)PubMedGoogle Scholar
  21. 21.
    Volpi N.: Oral bioavailability of chondroitin sulfate (Condrosulf) and its constituents in healthy male volunteers. Osteoarthr. Cartil. 10, 768–777 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    Volpi N.: Oral absorption and bioavailability of ichthyic origin chondroitin sulfate in healthy male volunteers. Osteoarthr. Cartil. 11, 433–441 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    Du J., White N., Eddington N.D.: The bioavailability and pharmacokinetics of glucosamine hydrochloride and chondroitin sulfate after oral and intravenous single dose administration in the horse. Biopharm. Drug Dispos. 25, 109–116 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    Ahn M.Y., Shin K.H., Kim D.H., Jung E.A., Toida T., Linhardt R.J., Kim Y.S.: Characterization of a Bacteroides species from human intestine that degrades glycosaminoglycans. Can. J. Microbiol. 44, 423–429 (1998)CrossRefPubMedGoogle Scholar
  25. 25.
    Hong S.W., Kim B.T., Shin H.Y., Kim W.S., Lee K.S., Kim Y.S., Kim D.H.: Purification and characterization of novel chondroitin ABC and AC lyases from Bacteroides stercoris HJ-15, a human intestinal anaerobic bacterium. Eur. J. Biochem. 269, 2934–2940 (2002)CrossRefPubMedGoogle Scholar
  26. 26.
    Shaya D., Hahn B.S., Park N.Y., Sim J.S., Kim Y.S., Cygler M.: Characterization of chondroitin sulfate lyase ABC from Bacteroides thetaiotaomicron WAL2926. Biochemistry. 47, 6650–6661 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Hyun Y.J., Lee K.S., Kim D.H.: Cloning, expression and characterization of acharan sulfate-degrading heparin lyase II from Bacteroides stercoris HJ-15. J. Appl. Microbiol. 108, 226–235 (2010)CrossRefPubMedGoogle Scholar
  28. 28.
    Hyun Y.J., Lee J.H., Kim D.H.: Cloning, overexpression, and characterization of recombinant heparinase III from Bacteroides stercoris HJ-15. Appl. Microbiol. Biotechnol. 86, 879–890 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    Hyun Y.J., Jung I.H., Kim D.H.: Expression of heparinase I of Bacteroides stercoris HJ-15 and its degradation tendency toward heparin-like glycosaminoglycans. Carbohydr. Res. 359, 37–43 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    Ulmer J.E., Vilén E.M., Namburi R.B., Benjdia A., Beneteau J., Malleron A., Bonnaffé D., Driguez P.A., Descroix K., Lassalle G., Le Narvor C., Sandström C., Spillmann D., Berteau O.: Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase. J. Biolumin. Chemilumin. 289, 24289–24303 (2014)Google Scholar
  31. 31.
    Benno Y., Sawada K., Mitsuoka T.: The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28, 975–986 (1984)CrossRefPubMedGoogle Scholar
  32. 32.
    Balmer S.E., Wharton B.A.: Diet and faecal flora in the newborn: breast milk and infant formula. Arch. Dis. Child. 64, 1672–1677 (1989)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Volpi N., Gabrielli O., Carlucci A., Zampini L., Santoro L., Padella L., Marchesello R.L., Maccari F., Coppa G.V.: Human milk glycosaminoglycans in feces of breastfed newborns: preliminary structural elucidation and possible biological role. Breastfeed. Med. 9, 105–106 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    Simon-Assmann P., Kedinger M., De Arcangelis A., Rousseau V., Simo P.: Extracellular matrix components in intestinal development. Experientia. 51, 883–900 (1995)CrossRefPubMedGoogle Scholar
  35. 35.
    Jandik K.A., Kruep D., Cartier M., Linhardt R.J.: Accelerated stability studies of heparin. J. Pharm. Sci. 85, 45–51 (1996)CrossRefPubMedGoogle Scholar
  36. 36.
    Volpi N., Mucci A., Schenetti L.: Stability studies of chondroitin sulfate. Carbohydr. Res. 315, 345–349 (1999)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Francesca Maccari
    • 1
  • Veronica Mantovani
    • 1
  • Orazio Gabrielli
    • 2
  • Antonio Carlucci
    • 3
  • Lucia Zampini
    • 2
  • Tiziana Galeazzi
    • 2
  • Fabio Galeotti
    • 1
  • Giovanni V. Coppa
    • 2
  • Nicola Volpi
    • 1
    Email author
  1. 1.Department of Life SciencesUniversity of Modena & Reggio EmiliaModenaItaly
  2. 2.Department of Clinical SciencesPolytechnic University of the Marche, Ospedali Riuniti, Presidio SalesiAnconaItaly
  3. 3.Department of PediatricsAscoli Piceno HospitalAscoli PicenoItaly

Personalised recommendations