Advertisement

Glycoconjugate Journal

, Volume 33, Issue 3, pp 405–415 | Cite as

Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines

HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study
  • Hiromi Ito
  • Hiroyuki Kaji
  • Akira Togayachi
  • Parastoo Azadi
  • Mayumi Ishihara
  • Rudolf Geyer
  • Christina Galuska
  • Hildegard Geyer
  • Kazuaki Kakehi
  • Mitsuhiro Kinoshita
  • Niclas G. Karlsson
  • Chunsheng Jin
  • Koichi Kato
  • Hirokazu Yagi
  • Sachiko Kondo
  • Nana Kawasaki
  • Noritaka Hashii
  • Daniel Kolarich
  • Kathrin Stavenhagen
  • Nicolle H. Packer
  • Morten Thaysen-Andersen
  • Miyako Nakano
  • Naoyuki Taniguchi
  • Ayako Kurimoto
  • Yoshinao Wada
  • Michiko Tajiri
  • Pengyuan Yang
  • Weiqian Cao
  • Hong Li
  • Pauline M. Rudd
  • Hisashi Narimatsu
Original Article

Abstract

The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples.

Keyword

Human proteome organization (HUPO) Human disease glycomics/proteome initiative (HGPI) Glycoproteomics 

Abbreviations

2AA

2-aminobenzoic acid

AAL

Aleuria aurantia lectin

CDG

Congenital disorders of glycosylation

ConA

Concanavalin A

DEAE

Diethylaminoethyl

EIC

Extracted ion chromatogram

ESI

Electrospray ionization

ETD

Electron-transfer dissociation

HCD

High-energy collision-induced dissociation

HGPI

Human Disease Glycomics/Proteome Initiative

HPLC

High performance liquid chromatography

HUPO

Human Proteome Organization

Ig

Immunoglobulin

LC

Liquid chromatography

MALDI

Matrix-assisted laser desorption ionization

MIRAGE

Minimum information required for a glycomics experiment

MS

Mass spectrometry

PVDF

Polyvinylidene fluoride

PA

Pyridylaminated

PGC

Porous graphitic carbon

Notes

Acknowledgments

Authors thank Drs. Yuzuru Ikehara and Ta-Wei Liu, and Ms. Azusa Tomioka of the National Institute of Advanced Industrial Science and Technology (AIST) for preparation and distribution of the samples. PA and MI acknowledge funding from the National Institutes of Health (NIH)-funded Research Resource for Biomedical Glycomics (P41GM10349010) to the Complex Carbohydrate Research Center. DK acknowledges funding from the European Union (Seventh Framework Program “Glycoproteomics”, grant number PCIG09-GA-2011-293847). NP, MT-A acknowledge funding from the Australian Research Council. NGK would like to acknowledge the financial contribution from Swedish Research Council (grant no 342-2004-4434 and no 621-2013-5895). All the authors would like to acknowledge the tremendous contribution that Azumi Takahashi of the AIST has made in assembling this paper and bringing it to fruition. This paper is dedicated to the memory of Prof. Kazuaki Kakehi of Kinki University who died on May 28, 2014 and we acknowledge his contribution to this project.

Supplementary material

10719_2015_9625_MOESM1_ESM.pdf (698 kb)
ESM 1 (PDF 697 kb)

References

  1. 1.
    Development, O. for E.C. and, Co-operation, O.E., Oecd, D.: Policy issues for the development and use of biomarkers in health. (2011)Google Scholar
  2. 2.
    Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 14, 569–576 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    Freire-de-Lima, L.: Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Front. Oncol. 4, 59 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rivinoja, A., Pujol, F.M., Hassinen, A., Kellokumpu, S.: Golgi pH, its regulation and roles in human disease. Ann. Med. 44, 542–554 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    Lauc, G., Essafi, A., Huffman, J.E., Hayward, C., Knezevic, A., Kattla, J.J., Polasek, O., Gornik, O., Vitart, V., Abrahams, J.L., Pucic, M., Novokmet, M., Redzic, I., Campbell, S., Wild, S.H., Borovecki, F., Wang, W., Kolcic, I., Zgaga, L., Gyllensten, U., Wilson, J.F., Wright, A.F., Hastie, N.D., Campbell, H., Rudd, P.M., Rudan, I.: Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet. 6, e1001256 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Saldova, R., Dempsey, E., Perez-Garay, M., Marino, K., Watson, J.A., Blanco-Fernandez, A., Struwe, W.B., Harvey, D.J., Madden, S.F., Peracaula, R., McCann, A., Rudd, P.M.: 5-AZA-2′-deoxycytidine induced demethylation influences N-glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics 6, 1362–1372 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    Abbott, K.L., Nairn, A.V., Hall, E.M., Horton, M.B., McDonald, J.F., Moremen, K.W., Dinulescu, D.M., Pierce, M.: Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 8, 3210–3220 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guo, H., Nairn, A., dela Rosa, M., Nagy, T., Zhao, S., Moremen, K., Pierce, M.: Transcriptional regulation of the protocadherin beta cluster during Her-2 protein-induced mammary tumorigenesis results from altered N-glycan branching. J. Biol. Chem 287, 24941–24954 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhao, P., Nairn, A.V., Hester, S., Moremen, K.W., O’Regan, R.M., Oprea, G., Wells, L., Pierce, M., Abbott, K.L.: Proteomic identification of glycosylphosphatidylinositol anchor-dependent membrane proteins elevated in breast carcinoma. J. Biol. Chem. 287, 25230–25240 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., Kawasaki, N., Khoo, K.-H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M.V., Packer, N.H., Perreault, H., Peter-Katalinić, J., Pohlentz, G., Reinhold, V.N., Rudd, P.M., Suzuki, A., Taniguchi, N.: Comparison of the methods for profiling glycoprotein glycans—HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiol. 17, 411–422 (2007)CrossRefGoogle Scholar
  11. 11.
    Wada, Y., Dell, A., Haslam, S.M., Tissot, B., Canis, K., Azadi, P., Bäckström, M., Costello, C.E., Hansson, G.C., Hiki, Y., Ishihara, M., Ito, H., Kakehi, K., Karlsson, N., Hayes, C.E., Kato, K., Kawasaki, N., Khoo, K.H., Kobayashi, K., Kolarich, D., Kondo, A., Lebrilla, C., Nakano, M., Narimatsu, H., Novak, J., Novotny, M.V., Ohno, E., Packer, N.H., Palaima, E., Renfrow, M.B., Tajiri, M., Thomsson, K.A., Yagi, H., Yu, S.Y., Taniguchi, N.: Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative multi-institutional study of IgA1. Mol. Cell. Proteomics 9, 719–727 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yagi, H., Ohno, E., Kondo, S., Yoshida, A., Kato, K.: Development and application of multidimensional HPLC mapping method for O-linked oligosaccharides. Biomolecules. 1, 48–62 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Takahashi, N., Kato, K.: GALAXY (Glycoanalysis by the Three Axes of MS and Chromatography): a web application that assists structural analyses of N-Glycans. Trends. Glycosci. Glycotechnol. 15, 235–251 (2003)CrossRefGoogle Scholar
  14. 14.
    Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79, 5051–5057 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    Jensen, P.H., Karlsson, N.G., Kolarich, D., Packer, N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7, 1299–1310 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    Campbell, M.P., Nguyen-Khuong, T., Hayes, C.A., Flowers, S.A., Alagesan, K., Kolarich, D., Packer, N.H., Karlsson, N.G.: Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. Biochim. Biophys. Acta 1844, 108–116 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    Pabst, M., Altmann, F.: Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal. Chem. 80, 7534–7542 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    Kellokumpu, S., Sormunen, R., Kellokumpu, I.: Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett. 516, 217–224 (2002)CrossRefPubMedGoogle Scholar
  19. 19.
    Saldova, R., Asadi Shehni, A., Haakensen, V.D., Steinfeld, I., Hilliard, M., Kifer, I., Helland, A., Yakhini, Z., Børresen-Dale, A.L., Rudd, P.M.: Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J. Proteome Res. 13, 2314–2327 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    Kolarich, D., Rapp, E., Struwe, W.B., Haslam, S.M., Zaia, J., McBride, R., Agravat, S., Campbell, M.P., Kato, M., Ranzinger, R., Kettner, C., York, W.S.: The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting mass-spectrometry-based glycoanalytic data. Mol. Cell. Proteomics 12, 991–995 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    York, W.S., Agravat, S., Aoki-Kinoshita, K.F., McBride, R., Campbell, M.P., Costello, C.E., Dell, A., Feizi, T., Haslam, S.M., Karlsson, N., Khoo, K.H., Kolarich, D., Liu, Y., Novotny, M., Packer, N.H., Paulson, J.C., Rapp, E., Ranzinger, R., Rudd, P.M., Smith, D.F., Struwe, W.B., Tiemeyer, M., Wells, L., Zaia, J., Kettner, C.: MIRAGE: the minimum information required for a glycomics experiment. Glycobiology 24, 402–406 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huffman, J.E., Pucic-Bakovic, M., Klaric, L., Hennig, R., Selman, M.H.J., Vuckovic, F., Novokmet, M., Kristic, J., Borowiak, M., Muth, T., Polasek, O., Razdorov, G., Gornik, O., Plomp, R., Theodoratou, E., Wright, A.F., Rudan, I., Hayward, C., Campbell, H., Deelder, A.M., Reichl, U., Aulchenko, Y.S., Rapp, E., Wuhrer, M., Lauc, G.: Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol. Cell. Proteomics 13, 1598–1610 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Reusch, D., Haberger, M., Falck, D., Peter, B., Maier, B., Gassner, J., Hook, M., Wagner, K., Bonnington, L., Bulau, P., Wuhrer, M.: Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: mass spectrometric methods. MAbs 7, 732–742 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sinha, S., Pipes, G., Topp, E.M., Bondarenko, P.V., Treuheit, M.J., Gadgil, H.S.: Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs. J. Am. Soc. Mass Spectrom. 19, 1643–1654 (2008)CrossRefPubMedGoogle Scholar
  25. 25.
    Mariño, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010)CrossRefPubMedGoogle Scholar
  26. 26.
    Leymarie, N., Griffin, P.J., Jonscher, K., Kolarich, D., Orlando, R., McComb, M., Zaia, J., Aguilan, J., Alley, W.R., Altmann, F., Ball, L.E., Basumallick, L., Bazemore-Walker, C.R., Behnken, H., Blank, M.A., Brown, K.J., Bunz, S.-C., Cairo, C.W., Cipollo, J.F., Daneshfar, R., Desaire, H., Drake, R.R., Go, E.P., Goldman, R., Gruber, C., Halim, A., Hathout, Y., Hensbergen, P.J., Horn, D.M., Hurum, D., Jabs, W., Larson, G., Ly, M., Mann, B.F., Marx, K., Mechref, Y., Meyer, B., Moginger, U., Neusubeta, C., Nilsson, J., Novotny, M.V., Nyalwidhe, J.O., Packer, N.H., Pompach, P., Reiz, B., Resemann, A., Rohrer, J.S., Ruthenbeck, A., Sanda, M., Schulz, J.M., Schweiger-Hufnagel, U., Sihlbom, C., Song, E., Staples, G.O., Suckau, D., Tang, H., Thaysen-Andersen, M., Viner, R.I., An, Y., Valmu, L., Wada, Y., Watson, M., Windwarder, M., Whittal, R., Wuhrer, M., Zhu, Y., Zou, C.: Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol. Cell. Proteomics 12, 2935–2951 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hiromi Ito
    • 1
    • 14
  • Hiroyuki Kaji
    • 1
  • Akira Togayachi
    • 1
  • Parastoo Azadi
    • 2
  • Mayumi Ishihara
    • 2
  • Rudolf Geyer
    • 3
  • Christina Galuska
    • 3
  • Hildegard Geyer
    • 3
  • Kazuaki Kakehi
    • 4
  • Mitsuhiro Kinoshita
    • 4
  • Niclas G. Karlsson
    • 5
  • Chunsheng Jin
    • 5
  • Koichi Kato
    • 6
  • Hirokazu Yagi
    • 6
  • Sachiko Kondo
    • 6
  • Nana Kawasaki
    • 7
    • 15
  • Noritaka Hashii
    • 7
  • Daniel Kolarich
    • 8
  • Kathrin Stavenhagen
    • 8
    • 16
  • Nicolle H. Packer
    • 9
  • Morten Thaysen-Andersen
    • 9
  • Miyako Nakano
    • 9
    • 17
  • Naoyuki Taniguchi
    • 10
  • Ayako Kurimoto
    • 10
  • Yoshinao Wada
    • 11
  • Michiko Tajiri
    • 11
  • Pengyuan Yang
    • 12
  • Weiqian Cao
    • 12
  • Hong Li
    • 12
  • Pauline M. Rudd
    • 13
  • Hisashi Narimatsu
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Complex Carbohydrate Research Center, Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA
  3. 3.Institute of Biochemistry, Faculty of MedicineUniversity of GiessenGiessenGermany
  4. 4.Department of Pharmaceutical Sciences, Faculty of PharmacyKinki UniversityOsakaJapan
  5. 5.Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  6. 6.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
  7. 7.Division of Biological Chemistry and BiologicalsNational Institute of Health SciencesTokyoJapan
  8. 8.Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  9. 9.Department of Chemistry and Biomolecular SciencesMacquarie UniversitySydneyAustralia
  10. 10.Disease Glycomics Team, RIKENSaitamaJapan
  11. 11.Osaka Medical Center and Research Institute for Maternal and Child HealthOsakaJapan
  12. 12.Department of Chemistry and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
  13. 13.National Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
  14. 14.Department of BiochemistryFukushima Medical UniversityFukushimaJapan
  15. 15.Graduate School of Medical Life ScienceYokohama City UniversityYokohamaJapan
  16. 16.Department of Molecular BiotechnologyHiroshima UniversityHigashi-HiroshimaJapan
  17. 17.Division of BioAnalytical ChemistryVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations