Advertisement

Glycoconjugate Journal

, Volume 32, Issue 9, pp 703–714 | Cite as

Serglycin protects against high fat diet-induced increase in serum LDL in mice

  • Astri J. Meen
  • Christian A. Drevon
  • Gunnar Pejler
  • Trond G. Jenssen
  • Ole Kristoffer Olstad
  • Magnus Åbrink
  • Svein O. Kolset
Original Article
  • 249 Downloads

Abstract

Proteoglycans have been implicated in regulation of lipoprotein metabolism. However, the impact of serglycin, the major proteoglycan expressed by many hematopoietic- and endothelial cells, on lipoprotein metabolism has not been explored. Here we addressed this issue by comparing several parameters of lipid metabolism in wild type (WT) and serglycin−/− mice, both at baseline and after feeding mice the Paigen diet. We show that, after feeding this diet for 20 weeks, serglycin deficient mice exhibited elevated concentrations of serum LDL in comparison with WT mice, thus suggesting that serglycin protects against an elevation of serum LDL levels after intake of a high-fat diet. Body weight increased in both groups, but only significantly in the serglycin−/− group. To explore the mechanism underlying this phenotype, genome-wide expression analysis was performed on liver tissues from WT and serglycin−/− mice. This analysis showed that serglycin-deficiency is associated with differential expression of numerous genes involved in the regulation of lipid metabolism, suggesting that the impact of serglycin on LDL levels may be related to effects at the gene expression level. In particular, several members of the CYP gene family were differently regulated in serglycin−/− compared with WT mice. Moreover, upstream regulator analysis suggested that several pro-inflammatory pathways, including the NFκB pathway, could contribute to the impact of serglycin on LDL. Hence, the elevation of serum LDL seen in serglycin−/− mice may be linked to dysregulated inflammatory responses. Taken together, our findings introduce serglycin as a novel player in processes that regulate lipid metabolism.

Keywords

Serglycin Proteoglycan Inflammation Paigen diet LDL Atherosclerosis 

Notes

Acknowledgments

This work was supported by grants from Institute of Basic Medical Sciences, University of Oslo, The Throne Holst Foundation, Freia Medical Research Fund, The Norwegian Diabetes Association, Anders Jahres Fund and The Swedish Research Council.

Supplementary material

10719_2015_9621_MOESM1_ESM.pdf (351 kb)
ESM 1 (PDF 350 kb)
10719_2015_9621_MOESM2_ESM.pdf (648 kb)
ESM 2 (PDF 648 kb)

References

  1. 1.
    Couchman, J.R., Pataki, C.A.: An introduction to proteoglycans and their localization. J. Histochem. Cytochem. Off. J. Histochem. Soc. 60(12), 885–897 (2012)CrossRefGoogle Scholar
  2. 2.
    Esko, J.D., Kimata, K., Lindahl, U.: Proteoglycans and sulfated glycosaminoglycans. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)Google Scholar
  3. 3.
    Gandhi, N.S., Mancera, R.L.: The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des. 72(6), 455–482 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    Williams, K.J., Tabas, I.: The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15(5), 551–561 (1995)PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Fogelstrand, P., Boren, J.: Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr. Metab. Cardiovasc. Dis. NMCD 22(1), 1–7 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    Camejo, G., Hurt-Camejo, E., Wiklund, O., Bondjers, G.: Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139(2), 205–222 (1998)CrossRefPubMedGoogle Scholar
  7. 7.
    Skalen, K., Gustafsson, M., Rydberg, E.K., Hulten, L.M., Wiklund, O., Innerarity, T.L., Boren, J.: Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890), 750–754 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    Evanko, S.P., Raines, E.W., Ross, R., Gold, L.I., Wight, T.N.: Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am. J. Pathol. 152(2), 533 (1998)PubMedCentralPubMedGoogle Scholar
  9. 9.
    Raines, E.W.: The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int. J. Exp. Pathol. 81(3), 173–182 (2000)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Pillarisetti, S., Paka, L., Obunike, J.C., Berglund, L., Goldberg, I.J.: Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix. J. Clin. Invest. 100(4), 867–874 (1997)PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Kunjathoor, V.V., Chiu, D.S., O’Brien, K.D., LeBoeuf, R.C.: Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 22(3), 462–468 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    Thompson, J.C., Tang, T., Wilson, P.G., Yoder, M.H., Tannock, L.R.: Increased atherosclerosis in mice with increased vascular biglycan content. Atherosclerosis 235(1), 71–75 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Gustafsson, M., Levin, M., Skålén, K., Perman, J., Fridén, V., Jirholt, P., Olofsson, S.-O., Fazio, S., Linton, M.F., Semenkovich, C.F., et al.: Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase. Circ. Res. 101(8), 777–783 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    MacArthur, J.M., Bishop, J.R., Stanford, K.I., Wang, L., Bensadoun, A., Witztum, J.L., Esko, J.D.: Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117(1), 153–164 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Stanford, K.I., Bishop, J.R., Foley, E.M., Gonzales, J.C., Niesman, I.R., Witztum, J.L., Esko, J.D.: Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Invest. 119(11), 3236–3245 (2009)PubMedCentralPubMedGoogle Scholar
  16. 16.
    Foley, E.M., Gordts, P.L., Stanford, K.I., Gonzales, J.C., Lawrence, R., Stoddard, N., Esko, J.D.: Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arterioscler. Thromb. Vasc. Biol. 33(9), 2065–2074 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    Dallinga-Thie, G.M., Franssen, R., Mooij, H.L., Visser, M.E., Hassing, H.C., Peelman, F., Kastelein, J.J.P., Péterfy, M., Nieuwdorp, M.: The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 211(1), 1–8 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kulseth, M.A., Kolset, S.O., Ranheim, T.: Stimulation of serglycin and CD44 mRNA expression in endothelial cells exposed to TNF-α and IL-1α. Biochim. Biophys. Acta Gen. Subj. 1428(2–3), 225–232 (1999)CrossRefGoogle Scholar
  19. 19.
    Zernichow, L., Abrink, M., Hallgren, J., Grujic, M., Pejler, G., Kolset, S.O.: Serglycin is the major secreted proteoglycan in macrophages and has a role in the regulation of macrophage tumor necrosis factor-alpha secretion in response to lipopolysaccharide. J. Biol. Chem. 281(37), 26792–26801 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    Lemire, J.M., Chan, C.K., Bressler, S., Miller, J., LeBaron, R.G., Wight, T.N.: Interleukin-1β selectively decreases the synthesis of versican by arterial smooth muscle cells. J. Cell. Biochem. 101(3), 753–766 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    Paigen, B., Morrow, A., Brandon, C., Mitchell, D., Holmes, P.: Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57(1), 65–73 (1985)CrossRefPubMedGoogle Scholar
  22. 22.
    Abrink, M., Grujic, M., Pejler, G.: Serglycin is essential for maturation of mast cell secretory granule. J. Biol. Chem. 279(39), 40897–40905 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    Košir, R., Zmrzljak, U.P., Bele, T., Acimovic, J., Perse, M., Majdic, G., Prehn, C., Adamski, J., Rozman, D.: Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland–involvement of cAMP‐responsive element modulator in epigenetic regulation of Cyp17a1. FEBS J. 279(9), 1584–1593 (2011)PubMedGoogle Scholar
  24. 24.
    Dalla Valle, L., Toffolo, V., Vianello, S., Belvedere, P., Colombo, L.: Expression of cytochrome P450c17 and other steroid-converting enzymes in the rat kidney throughout the life-span. J. Steroid Biochem. Mol. Biol. 91(1–2), 49–58 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif) 25(4), 402–408 (2001)CrossRefGoogle Scholar
  26. 26.
    Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6), 1101–1108 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Xie, C., Woollett, L.A., Turley, S.D., Dietschy, J.M.: Fatty acids differentially regulate hepatic cholesteryl ester formation and incorporation into lipoproteins in the liver of the mouse. J. Lipid Res. 43(9), 1508–1519 (2002)CrossRefPubMedGoogle Scholar
  28. 28.
    Greco, T.L., Payne, A.H.: Ontogeny of expression of the genes for steroidogenic enzymes P450 side-chain cleavage, 3 beta-hydroxysteroid dehydrogenase, P450 17 alpha-hydroxylase/C17-20 lyase, and P450 aromatase in fetal mouse gonads. Endocrinology 135(1), 262–268 (1994)PubMedGoogle Scholar
  29. 29.
    Zhang, P., Compagnone, N.A., Fiore, C., Vigne, J.L., Culp, P., Musci, T.J., Mellon, S.H.: Developmental gonadal expression of the transcription factor SET and its target gene, P450c17 (17alpha-hydroxylase/c17,20 lyase). DNA Cell Biol. 20(10), 613–624 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Nelson, D.R., Zeldin, D.C., Hoffman, S.M., Maltais, L.J., Wain, H.M., Nebert, D.W.: Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14(1), 1–18 (2004)CrossRefPubMedGoogle Scholar
  31. 31.
    Martignoni, M., Groothuis, G.M., de Kanter, R.: Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol. 2(6), 875–894 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Krämer, A., Green. J., Pollard, J., Tugendreich, S.: Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. (2013)Google Scholar
  33. 33.
    Gu, S., Ripp, S.L., Prough, R.A., Geoghegan, T.E.: Dehydroepiandrosterone affects the expression of multiple genes in rat liver including 11 beta-hydroxysteroid dehydrogenase type 1: a cDNA array analysis. Mol. Pharmacol. 63(3), 722–731 (2003)CrossRefPubMedGoogle Scholar
  34. 34.
    EnayetAllah, A.E., Luria, A., Luo, B., Tsai, H.-J., Sura, P., Hammock, B.D., Grant, D.F.: Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J. Biol. Chem. 283(52), 36592–36598 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, L.-N., Vincelette, J., Cheng, Y., Mehra, U., Chen, D., Anandan, S.-K., Gless, R., Webb, H.K., Wang, Y.-X.: Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation, and dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 29(9), 1265–1270 (2009)CrossRefPubMedGoogle Scholar
  36. 36.
    Janssen, A.W., Kersten. S.: The role of the gut microbiota in metabolic health. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. (2015)Google Scholar
  37. 37.
    Kolset, S.O., Pejler, G.: Serglycin: a structural and functional chameleon with wide impact on immune cells. J. Immunol. (Baltimore, Md : 1950) 187(10), 4927–4933 (2011)CrossRefGoogle Scholar
  38. 38.
    Wernersson, S., Braga, T., Sawesi, O., Waern, I., Nilsson, K.E., Pejler, G., Abrink, M.: Age-related enlargement of lymphoid tissue and altered leukocyte composition in serglycin-deficient mice. J. Leukoc. Biol. 85(3), 401–408 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    Gregor, M.F., Hotamisligil, G.S.: Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011)CrossRefPubMedGoogle Scholar
  40. 40.
    Badimon, L., Vilahur, G.: LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Ann. N. Y. Acad. Sci. 1254(1), 18–32 (2012)CrossRefPubMedGoogle Scholar
  41. 41.
    Hansson, G.K., Hermansson, A.: The immune system in atherosclerosis. Nat. Immunol. 12(3), 204–212 (2011)CrossRefPubMedGoogle Scholar
  42. 42.
    Westerterp, M., Bochem, A.E., Yvan-Charvet, L., Murphy, A.J., Wang, N., Tall, A.R.: ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 114(1), 157–170 (2014)CrossRefPubMedGoogle Scholar
  43. 43.
    Memon, R.A., Grunfeld, C., Moser, A.H., Feingold, K.R.: Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology 132(5), 2246–2253 (1993)PubMedGoogle Scholar
  44. 44.
    Feingold, K.R., Pollock, A.S., Moser, A.H., Shigenaga, J.K., Grunfeld, C.: Discordant regulation of proteins of cholesterol metabolism during the acute phase response. J. Lipid Res. 36(7), 1474–1482 (1995)PubMedGoogle Scholar
  45. 45.
    Esteve, E., Ricart, W., Fernández-Real, J.M.: Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin. Nutr. 24(1), 16–31 (2005)CrossRefPubMedGoogle Scholar
  46. 46.
    Khovidhunkit, W., Kim, M.-S., Memon, R.A., Shigenaga, J.K., Moser, A.H., Feingold, K.R., Grunfeld, C.: Thematic review series: the pathogenesis of atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid Res. 45(7), 1169–1196 (2004)CrossRefPubMedGoogle Scholar
  47. 47.
    Kitagawa, S., Yamaguchi, Y., Imaizumi, N., Kunitomo, M., Fujiwara, M.: A uniform alteration in serum lipid metabolism occurring during inflammation in mice. Jpn. J. Pharmacol. 58(1), 37–46 (1992)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Astri J. Meen
    • 1
  • Christian A. Drevon
    • 1
  • Gunnar Pejler
    • 2
    • 3
  • Trond G. Jenssen
    • 4
    • 5
  • Ole Kristoffer Olstad
    • 6
  • Magnus Åbrink
    • 7
  • Svein O. Kolset
    • 1
  1. 1.Department of Nutrition, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
  2. 2.Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
  4. 4.Department of Transplant Medicine, Section of NephrologyOslo University Hospital, RikshospitaletOsloNorway
  5. 5.Institute of Clinical Medicine, Faculty of Health ScienceUniversity of TromsøTromsøNorway
  6. 6.Department of Medical BiochemistryOslo University Hospital and University of OsloOsloNorway
  7. 7.Department of Biomedical Sciences and Veterinary Public HealthSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations