Advertisement

Glycoconjugate Journal

, Volume 31, Issue 6–7, pp 469–473 | Cite as

Flexibility and mutagenic resiliency of glycosyltransferases

  • Marie Lund Bay
  • Jose A. Cuesta-Seijo
  • Joel T. Weadge
  • Mattias Persson
  • Monica M. PalcicEmail author
Article
  • 285 Downloads

Abstract

The human blood group A and B antigens are synthesized by two highly homologous enzymes, glycosyltransferase A (GTA) and glycosyltransferase B (GTB), respectively. These enzymes catalyze the transfer of either GalNAc or Gal from their corresponding UDP-donors to αFuc1–2βGal-R terminating acceptors. GTA and GTB differ at only four of 354 amino acids (R176G, G235S, L266M, G268A), which alter the donor specificity from UDP-GalNAc to UDP-Gal. Blood type O individuals synthesize truncated or non-functional enzymes. The cloning, crystallization and X-ray structure elucidations for GTA and GTB have revealed key residues responsible for donor discrimination and acceptor binding. Structural studies suggest that numerous conformational changes occur during the catalytic cycle. Over 300 ABO alleles are tabulated in the blood group antigen mutation database (BGMUT) that provides a framework for structure-function studies. Natural mutations are found in all regions of GTA and GTB from the active site, flexible loops, stem region and surfaces remote from the active site. Our characterizations of natural mutants near a flexible loop (V175M), on a remote surface site (P156L), in the metal binding motif (M212V) and near the acceptor binding site (L232P) demonstrate the resiliency of GTA and GTB to mutagenesis.

Keywords

Blood group glycosyltransferases Natural mutations 

Abbreviations

GTA

Blood group A synthesizing α − 1,3-N-acetygalactosaminyltransferase

GTB

Blood group B synthesizing α-1,3-galactosyltransferase

Notes

Acknowledgments

This study was funded in part by a grant from FNU to M.M.P. Mette Bien is thanked for assistance with the characterization of the V212mutant.

References

  1. 1.
    Lairson, L.L., Henrissat, B., Davies, G.J., Withers, S.G.: Glycosyltransferases: structures, functions and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008)PubMedCrossRefGoogle Scholar
  2. 2.
    Breton, C., Fournel-Gigleux, S.: Palcic, M.M.: Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549 (2012)PubMedCrossRefGoogle Scholar
  3. 3.
    Lombard, V., Ramulu, H.G., Drula, E., Coutinho, P.M., Henrissat, B.: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, 490–495 (2014)CrossRefGoogle Scholar
  4. 4.
    Yamamoto, F., Clausen, H., White, T., Marken, J., Hakomori, S.: Molecular and genetic basis of the histo-blood group ABO system. Nature 345, 229–233 (1990)PubMedCrossRefGoogle Scholar
  5. 5.
    Patenaude, S.I., Seto, N.O.L., Borisova, S.N., Szpacenko, A., Marcus, S.L., Palcic, M.M., Evans, S.V.: The structural basis for specificity in human ABO(H) blood group biosynthesis Nature. Struct. Biol. 9, 685–690 (2002)CrossRefGoogle Scholar
  6. 6.
    Letts, J.A., Rose, N.L., Fang, Y.R., Barry, C.H., Borisova, S.N., Seto, N.O.L., Palcic, M.M., Evans, S.V.: Differential recognition of the type I and II H-antigen acceptors by the human ABO (H) blood group A and B glycosyltransferases. J. Biol. Chem. 281, 3625–3632 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    Alfaro, J.A., Zheng, R.B., Persson, M., Letts, J.A., Polakowski, R., Bai, Y., Borisova, S.N., Seto, N.O.L., Lowary, T.L., Palcic, M.M., Evans, S.V.: ABO (H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J. Biol. Chem. 283, 10097–100108 (2008)PubMedCrossRefGoogle Scholar
  8. 8.
    Jørgensen, R., Pesnot, T., Lee, H.J., Palcic, M.M., Wagner, G.K.: Base-modified donor analogues reveal novel dynamic features of a glycosyltransferase. J. Biol. Chem. 288, 26201–26208 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Patnaik, S.K., Helmberg, W., Blumenfeld, O.O.: BGMUT: NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems. Nucleic Acids Res. 40, D1023–D1029 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Seto, N.O.L., Compston, C.A., Szpacenko, A., Palcic, M.M.: Enzymatic synthesis of blood group A and B trisaccharide analogues. Carbohydr. Res. 324, 161–169 (2000)PubMedCrossRefGoogle Scholar
  11. 11.
    Palcic, M.M., Heerze, L.D., Pierce, M., Hindsgaul, O.: The use of hydrophobic synthetic glycosides as acceptors in glycosyltransferase assays. Glycoconj. J. 5, 49–63 (1988)CrossRefGoogle Scholar
  12. 12.
    Marcus, S.L., Polakowski, R., Seto, N.O.L., Leinala, E., Borisova, S.N., Blancher, A., Roubinet, F., Evans, S.V., Palcic, M.M.: A single point mutation reverses the donor specificity of human blood group B-synthesizing galactosyltransferase. J. Biol. Chem. 278, 12403–12405 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Hult, A.K., Yazer, M.H., Jørgensen, R., Hellberg, A., Hustinx, H., Peyrard, T., Palcic, M.M., Olsson, M.L.: Weak A phenotypes associated with novel ABO alleles carrying the A2-related 1061C deletion and various missense substitutions. Transfusion 50, 1471–1486 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marie Lund Bay
    • 1
  • Jose A. Cuesta-Seijo
    • 1
  • Joel T. Weadge
    • 1
  • Mattias Persson
    • 1
  • Monica M. Palcic
    • 1
    Email author
  1. 1.Carlsberg LaboratoryCopenhagen VDenmark

Personalised recommendations