Glycoconjugate Journal

, Volume 31, Issue 6–7, pp 485–496 | Cite as

Purification and characterization of a class II α-Mannosidase from Moringa oleifera seed kernels

  • Kiran Kumar TejavathEmail author
  • Siva Kumar Nadimpalli


α-Mannosidase (EC. belonging to class II glycosyl hydrolase family 38 was purified from Moringa oleifera seeds to apparent homogeneity by conventional protein purification methods followed by affinity chromatography on Con A Sepharose and size exclusion chromatography. The purified enzyme is a glycoprotein with 9.3 % carbohydrate and exhibited a native molecular mass of 240 kDa, comprising two heterogeneous subunits with molecular masses of 66 kDa (α-larger subunit) and 55 kDa (β-smaller subunit). Among both the subunits only larger subunit stained for carbohydrate with periodic acid Schiff’s staining. The optimum temperature and pH for purified enzyme was 50 °C and pH 5.0, respectively. The enzyme was stable within the pH range of 3.0–7.0. The enzyme was inhibited by EDTA, Hg2+, Ag2+, and Cu2+. The activity lost by EDTA was completely regained by addition of Zn2+. The purified enzyme was characterized in terms of the kinetic parameters K m (1.6 mM) and V max (2.2 U/mg) using para-nitrophenyl-α-D-mannopyranoside as substrate. The enzyme was very strongly inhibited by swainsonine (SW) at 1 μM concentration a class II α-Mannosidase inhibitor, but not by deoxymannojirimycin (DMNJ). Chemical modification studies revealed involvement of tryptophan at active site. The inhibition by SW and requirement of the Zn2+ as a metal ion suggested that the enzyme belongs to class II α-Mannosidase.


Moringa oleifera α-Mannosidase Con A Sepharose 4B gel DE-52 (DiEthyl cellulose) PAS Staining 





DiEthyl cellulose-52

Con A Sepharose

Concanavalin A Sepharose






Glucosyl Salicilyl Imine


Galactosyl Salicilyl Imine


Galactosyl Naphthyl Imine


Glucosyl Naphthyl Imine


Mannosyl Naphthyl Imine



KKT thanks CSIR, India for Senior Research Fellowship. The authors are grateful to Prof. C.P.Rao and his lab members at IIT Mumbai for providing the synthetic glycoconjugates used in this study.


  1. 1.
    Snaith, S.M.: Characterization of jack-bean alpha-D-mannosidase as a zinc metalloenzyme. Biochem. J. 147(1), 83–90 (1975)PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hossain, M.A., Nakamura, K., Kimura, Y.: alpha-mannosidase involved in turnover of plant complex type N-glycans in tomato (Lycopersicum esculentum) fruits. Biosci. Biotechnol. Biochem. 73(1), 140–146 (2009)PubMedCrossRefGoogle Scholar
  3. 3.
    Gnanesh Kumar, B.S., Pohlentz, G., Mormann, M., Siva Kumar, N.: Characterization of alpha-mannosidase from Dolichos lablab seeds: partial amino acid sequencing and N-glycan analysis. Protein Expr. Purif. 89(1), 7–15.Google Scholar
  4. 4.
    Li, Y.T.: Studies on the glycosidases in jack bean meal. I. Isolation and properties of alpha-mannosidase. J. Biol. Chem. 242(23), 5474–5480 (1967)PubMedGoogle Scholar
  5. 5.
    Paus, E.: alpha-Mannosidase from Phaseolus vulgaris. Composition and structural properties. Eur. J. Biochem. 73(1), 155–161 (1977)PubMedCrossRefGoogle Scholar
  6. 6.
    Curdel, A., Petek, F.: Purification and properties of alpha-D-mannosidase from the germinated seeds of Medicago sativa (alfalfa). Biochem. J. 185(2), 455–462 (1980)PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tulasi, R.B., Nadimpalli, S.K.: Purification of alpha-mannosidase activity from Indian lablab beans. Biochem. Mol. Biol. Int. 41(5), 925–931 (1997)PubMedGoogle Scholar
  8. 8.
    Ohtani, K., Misaki, A.: Purification and characterization of α-D-galactosidase and α-D-mannosidase from papaya (Carica papaya) seeds. Agric. Biol. Chem. 47, 2441–2451 (1983)CrossRefGoogle Scholar
  9. 9.
    Kishimoto, T., Hori, H., Takano, D., Nakano, Y., Watanabe, M., Mitsui, T.: Rice alpha-mannosidase digesting the high mannose glycopeptide of glutelin. Physiol. Plant. 112(1), 15–24 (2001)PubMedCrossRefGoogle Scholar
  10. 10.
    Subha Mahadevi, A., Vegiraju Suryanarayana, R., Siva Kumar, N.: Alpha-mannosidase from the seeds of Triticale. J. Biochem. Mol. Biol. Biophys. 6(6), 397–400 (2002)PubMedCrossRefGoogle Scholar
  11. 11.
    Kestwal, R.M., Bhide, S.V.: Purification and partial characterization of alpha-D-mannosidase from Erythrina indica seeds. Indian J. Biochem. Biophys. 42(3), 156–160 (2005)PubMedGoogle Scholar
  12. 12.
    Ahi, A.P., Gonnety, J.T., Faulet, B.M., Kouamé, L.P., Niamké, S.: Biochemical characterization of two α -mannosidases from breadfruit (Artocarpus communis) seeds. Afr. J. Biochem. Res. 1(6), 106–116 (2007)Google Scholar
  13. 13.
    Einhoff, W., Rudiger, H.: Isolation of the Canavalia ensiformis seed alpha-mannosidase by chromatography on concanavalin A, the lectin from the same plant, without involving its sugar binding site. Biol. Chem. Hoppe Seyler 367(4), 313–320 (1986)PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura, Y., Hess, D., Sturm, A.: The N-glycans of jack bean alpha-mannosidase. Structure, topology and function. Eur. J. Biochem. 264(1), 168–175 (1999)PubMedCrossRefGoogle Scholar
  15. 15.
    Blom, H., Reyes, F., Carlsson, J.: Purification and characterization of an alpha-mannosidase from the tropical fruit babaco (Vasconcellea x heilbornii Cv. babaco). J. Agric. Food Chem. 56(22), 10872–10878 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    Burrows, H.M., Rastall, R.A.: Essential carboxyl and tryptophan residues in jack bean α-d-Mannosidase. Phytochemistry 48(2), 257–260 (1998)CrossRefGoogle Scholar
  17. 17.
    Kestwal, R.M., Konozy, E.H., Hsiao, C.D., Roque-Barreira, M.C., Bhide, S.V.: Characterization of alpha-mannosidase from Erythrina indica seeds and influence of endogenous lectin on its activity. Biochim. Biophys. Acta 1770(1), 24–28 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    Misaki, R., Fujiyama, K., Yokoyama, H., Ido, Y., Miyauchi, K., Yoshida, T., Seki, T.: Characterization of almond alpha-mannosidase and its application for structure analysis of sugar chain. J. Biosci. Bioeng. 96(2), 187–192 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar, A., Singhal, N.K., Ramanujam, B., Mitra, A., Rameshwaram, N.R., Nadimpalli, S.K., Rao, C.P.: C(1)-/C(2)-aromatic-imino-glyco-conjugates: experimental and computational studies of binding, inhibition and docking aspects towards glycosidases isolated from soybean and jack bean. Glycoconj. J. 26(4), 495–510 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    Gnanesh Kumar, B.S., Pohlentz, G., Schulte, M., Mormann, M., Siva Kumar, N.: Jack bean alpha-mannosidase: Amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 24(3), 252–261. doi:cwt106Google Scholar
  21. 21.
    Tejavath, K.K., Nadimpalli, S.K.: Purification and biochemical Characterization of an acidic α-galactosidase from the Moringa oleifera seeds. Trends Carbohydr. Res. 5(2), 27–34 (2013)Google Scholar
  22. 22.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)PubMedCrossRefGoogle Scholar
  23. 23.
    Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A., Smith, F.: A colorimetric method for the determination of sugars. Nature 168(4265), 167 (1951)PubMedCrossRefGoogle Scholar
  24. 24.
    Andrews, P.: Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem. J. 91(2), 222–233 (1964)PubMedPubMedCentralGoogle Scholar
  25. 25.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)PubMedCrossRefGoogle Scholar
  26. 26.
    Zacharius, R.M., Zell, T.E., Morrison, J.H., Woodlock, J.J.: Glycoprotein staining following electrophoresis on acrylamide gels. Anal. Biochem. 30(1), 148–152 (1969)PubMedCrossRefGoogle Scholar
  27. 27.
    Gassenschmidt, U., Jany, K.D., Tauscher, B., Niebergall, H.: Isolation and characterization of a flocculating protein from Moringa oleifera Lam. Biochim. Biophys. Acta 1243(3), 477–481 (1995)PubMedCrossRefGoogle Scholar
  28. 28.
    Woo, K.K., Miyazaki, M., Hara, S., Kimura, M., Kimura, Y.: Purification and characterization of a co(II)-sensitive alpha-mannosidase from Ginkgo biloba seeds. Biosci. Biotechnol. Biochem. 68(12), 2547–2556 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    Waln, K.T., Poulton, J.E.: Partial purification and characterization of an α-d-mannosidase from mature seeds of Prunus serotina Ehrh. Plant Sci. 53(1), 1–10 (1987)CrossRefGoogle Scholar
  30. 30.
    Howard, S., He, S., Withers, S.G.: Identification of the active site nucleophile in jack bean alpha-mannosidase using 5-fluoro-beta-L-gulosyl fluoride. J. Biol. Chem. 273(4), 2067–2072 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    Priya Sethu, K.M., Prabha, T.N.: Alpha-D-Mannosidase from Capsicum Annuum. Phytochemistry 44(5), 383–387 (1997)CrossRefGoogle Scholar
  32. 32.
    Nakajima, M., Imamura, H., Shoun, H., Wakagi, T.: Unique metal dependency of cytosolic alpha-mannosidase from Thermotoga maritima, a hyperthermophilic bacterium. Arch. Biochem. Biophys. 415(1), 87–93 (2003)PubMedCrossRefGoogle Scholar
  33. 33.
    Kawar, Z., Karaveg, K., Moremen, K.W., Jarvis, D.L.: Insect cells encode a class II alpha-mannosidase with unique properties. J. Biol. Chem. 276(19), 16335–16340 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Howard, S., Braun, C., McCarter, J., Moremen, K.W., Liao, Y.F., Withers, S.G.: Human lysosomal and jack bean alpha-mannosidases are retaining glycosidases. Biochem. Biophys. Res. Commun. 238(3), 896–898 (1997)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiochemistryCentral University of RajasthanAjmerIndia
  2. 2.Protein Biochemistry and Glycobiology Laboratory, Department of BiochemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations