Glycoconjugate Journal

, Volume 30, Issue 7, pp 701–707 | Cite as

Microanalysis of stomach cancer glycosaminoglycans

  • Amanda Weyers
  • Bo Yang
  • Jong-Hwan Park
  • Yong-Seok Kim
  • Sun-Moon Kim
  • Sang-Eok Lee
  • Fuming Zhang
  • Kyung Bok LeeEmail author
  • Robert J. LinhardtEmail author


Glycosaminoglycans (GAGS) are anionic, linear, polysaccharides involved in cell signaling. The GAG content, composition and structure of human tissue have been suggested to play a role in cancer and might provide useful diagnostic or prognostic markers. The current study examines 17 stomach tissue biopsy samples taken from normal individuals and from patients with gastric cancers. An ultrasensitive liquid chromatography (LC) – mass spectrometry assay was applied to individual biopsy samples as small 250 μg providing GAG content and disaccharide composition. The results of these analyses show a significant increase in non-sulfated chondroitin/dermatan sulfate concentration in all cancer samples when compared to normal tissues. In addition in advanced gastric cancer, a significant decrease is observed in hyaluronan.


Stomach cancer Glycosaminoglycan Chondroitin sulfate Hyaluronan Disaccharide analysis 



Advanced gastric cancer




3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate


Chondroitin sulfate


Dermatan sulfate


Early gastric cancer


Electrospray ionization






Heparan sulfate


Limit of detection


Molecular weight cut-off



The authors are grateful to the US National Institutes of Health (grant GM38060) and by (Grant No. 2011-0002726) for Basic Research in Science and Engineering of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (MEST).


  1. 1.
    Crew, K.D., Neugut, A.I.: Epidemiology of gastric cancer. World J. Gastroenterol. 12, 354–62 (2006)PubMedGoogle Scholar
  2. 2.
    Hartgrink, H.H., Jansen, E.P.M., Van Grieken, N.C.T., Van de Velde, C.J.H.: Gastric cancer. Lancet 374, 477–90 (2009)PubMedCrossRefGoogle Scholar
  3. 3.
    Machado, G., Clamp, J.R., Read, A.E.: Carbohydrate content of endoscopic gastric biopsies in carcinoma of the stomach. Gut 18, 670–2 (1977)PubMedCrossRefGoogle Scholar
  4. 4.
    Theocharis, A.D., Vynios, D.H., Papageorgakopoulou, N., Skandalis, S.S., Theocharis, D.A.: Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int. J. Biochem. Cell Biol. 35, 376–90 (2003)PubMedCrossRefGoogle Scholar
  5. 5.
    Li, H., Guo, L., Li, J., Liu, N., Qi, R., Liu, J.: Expression of hyaluronan receptors CD44 and RHAMM in stomach cancers: relevance with tumor progression. Int. J. Oncol. 17, 927–932 (2000)PubMedGoogle Scholar
  6. 6.
    Maury, C.: Carbohydrate patterns of endoscopic mucosal biopsies in cancer of the stomach and chronic gastritis. Clin. Chim. Acta 126, 155–159 (1982)PubMedCrossRefGoogle Scholar
  7. 7.
    Geocze, S., Nader, H., Mincis, M., Novo, N., Paiva, E.: Sulfated glycosaminoglycan composition of human gastric mucosa: effect of aging, chronic superficial gastritis and adenocarcinoma. Brazilian J. Med. Biol. Res. 18, 487–492 (1985)Google Scholar
  8. 8.
    Afratis, N., Gialeli, C., Nikitovic, D., Tsegenidis, T., Karousou, E., Theocharis, A.D., Pavão, M.S., Tzanakakis, G.N., Karamanos, N.K.: Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279, 1177–97 (2012)PubMedCrossRefGoogle Scholar
  9. 9.
    Li, J., Mo, M.-L., Chen, Z., Yang, J., Li, Q.-S., Wang, D.-J., Zhang, H., Ye, Y.-J., Li, H.-L., Zhang, F., Zhou, H.-M.: HSulf-1 inhibits cell proliferation and invasion in human gastric cancer. Cancer Sci 102, 1815–21 (2011)PubMedCrossRefGoogle Scholar
  10. 10.
    Setälä, L., Lipponen, P., Tammi, R., Tammi, M., Eskelinen, M., Alhava, E., Kosma, V.M.: Expression of CD44 and its variant isoform v3 has no prognostic value in gastric cancer. Histopathol. 38, 13–20 (2001)CrossRefGoogle Scholar
  11. 11.
    Vizoso, F.J., Del Casar, J., Corte, M.G.D., Del Casar, J.M., García, I., Alvarez, A., García-Muñiz, J.L.: Significance of cytosolic hyaluronan levels in gastric cancer. Eur. J. Surg. Oncol. 30, 318–324 (2004)PubMedCrossRefGoogle Scholar
  12. 12.
    Del Casar, J.M., Corte, M.D., Alvarez, A., García, I., Bongera, M., González, L.O., García-Muñiz, J.L., Allende, M.T., Astudillo, A., Vizoso, F.J.: Lymphatic and/or blood vessel invasion in gastric cancer: relationship with clinicopathological parameters, biological factors and prognostic significance. J. Cancer Res. Clin. Oncol. 134, 153–61 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    Setälä, L.P., Tammi, M.I., Tammi, R.H., Eskelinen, M.J., Lipponen, P.K., Agren, U.M., Parkkinen, J., Alhava, E.M., Kosma, V.M.: Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Brit. J. Cancer 79, 1133–8 (1999)PubMedCrossRefGoogle Scholar
  14. 14.
    Wang, C., Tammi, M., Guo, H., Tammi, R.: Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers. Am. J. Pathol. 148, 1861–9 (1996)PubMedGoogle Scholar
  15. 15.
    Godavarti, R., Davis, M., Venkataraman, G., Cooney, C., Langer, R., Sasisekharan, R.: Sas.: Heparinase III from Flavobacterium heparinum: cloning and recombinant expression in Escherichia coli. Biochem. Biophys. Res. Commun. 225, 751–758 (1996)PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshida, E., Arakawa, S., Matsunaga, T., Toriumi, S., Tokuyama, S., Morikawa, K., Tahara, Y.: Cloning, sequencing, and expression of the gene from Bacillus circulans that codes for a heparinase that degrades both heparin and heparan sulfate. Biosci. Biotechnol. Biochem. 66, 1873–1879 (2002)PubMedCrossRefGoogle Scholar
  17. 17.
    Shaya, D., Tocilj, A., Li, Y., Myette, J., Venkataraman, G., Sasisekharan, R., Cygler, M.: Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J. Biol. Chem. 281, 15525–15535 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao, X., Yang, B., Dutta, P., Gasimli, L., Zhang, F., Linhardt, R.J.: Cell-based microscale isolation of glycoaminoglycans for glycomics study. J. Carbohydr. Chem. 31, 420–435 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhao, X., Yang, B., Linkens, K., Datta, P., Onishi, A., Zhang, F., Linhardt, R.J.: Microscale separation of heparosan, heparan sulfate and heparin. Anal. Biochem. 434, 215–217 (2013)PubMedCrossRefGoogle Scholar
  20. 20.
    Chang, Y., Yang, B., Zhao, X., Linhardt, R.J.: Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal. Biochem. 427, 91–98 (2012)PubMedCrossRefGoogle Scholar
  21. 21.
    Militsopoulou, M., Lamari, F.N., Hjerpe, A., Karamanos, N.K.: Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23, 1104–1109 (2002)PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, B., Weyers, A., Baik, J.Y., Sterner, E., Sharfstein, S., Mousa, S.A., Zhang, F., Dordick, J.S., Linhardt, R.J.: Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal. Biochem. 415, 59–66 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    Knudson, W., Biswas, C., Li, X., Nemec, R., Toole, B.: The role and regulation of tumor associated hyaluronan. CIBA Found. Symp. 143, 150–159 (1989)PubMedGoogle Scholar
  24. 24.
    Teng, Y.H.-F., Tan, P.-H., Chia, S.-J., Zam, N.A.B.M., Lau, W.K.-O., Cheng, C.W.-S., Bay, B.-H.Y., W-C, G.: Increased expression of non-sulfated chondroitin correlates with adverse clinicopathological parameters in prostate cancer. Modern Pathol. 21, 893–901 (2008)CrossRefGoogle Scholar
  25. 25.
    Sakko, A.J., Butler, M.S., Byers, S., Reinboth, B.J., Stahl, J., Kench, J.G., Horvath, L.G., Sutherland, R.L., Stricker, P.D., Henshall, S.M., Marshall, V.R., Tilley, W.D., Horsfall, D.J., Ricciardelli, C.: Immunohistochemical level of unsulfated chondroitin disaccharides in the cancer stroma is an independent predictor of prostate cancer relapse. Cancer Epidemiol. Biomark. Prevent. 17, 2488–97 (2008)CrossRefGoogle Scholar
  26. 26.
    Theocharis, A.D., Tsara, M.E., Papageorgacopoulou, N., Karavias, D.D., Theocharis, D.A.: Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition. Biochim. Biophys. Acta 1502, 150–159 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amanda Weyers
    • 1
  • Bo Yang
    • 1
  • Jong-Hwan Park
    • 2
  • Yong-Seok Kim
    • 3
  • Sun-Moon Kim
    • 3
  • Sang-Eok Lee
    • 4
  • Fuming Zhang
    • 5
  • Kyung Bok Lee
    • 2
    Email author
  • Robert J. Linhardt
    • 1
    • 5
    • 6
    Email author
  1. 1.Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Biochemistry, College of MedicineKonyang UniversityDaejeonKorea
  3. 3.Department of Internal Medicine, College of MedicineKonyang University, Konyang HospitalDaejeonKorea
  4. 4.Department of Surgery, College of MedicineKonyang University, Konyang HospitalDaejeonKorea
  5. 5.Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  6. 6.Department of Biology and Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations