Advertisement

Glycoconjugate Journal

, Volume 30, Issue 7, pp 717–725 | Cite as

The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc

  • Cindy Shu
  • Clare Hughes
  • Susan M. Smith
  • Margaret M. Smith
  • Anthony Hayes
  • Bruce Caterson
  • Christopher B. Little
  • James MelroseEmail author
Article

Abstract

Composite agarose (1.2 %) polyacrylamide (0.6 %) gel electrophoresis was used to separate discrete populations of native aggrecan and perlecan in newborn to 10 year old ovine intervertebral discs (IVDs). Semi-dry immunoblotting using core-protein and glycosaminoglycan (GAG) side chain specific monoclonal antibodies in combination with chondroitin ABC lyase demonstrated intra-chain native 7-D-4 chondroitin sulphate (CS) sulphation motifs and variable proportions of non-reducing terminal Δ4,5-unsaturated uronate-N-acetylgalactosamine-4-sulphate [2B6(+)] and Δ4,5-unsaturated glucuronate-N-acetylgalactosamine-6-sulphate [3B3(+)] disaccharides. The relative abundance of 2-B-6(+) aggrecan increased with advancing age of the IVD samples while the converse was true for the 3-B-3(+) aggrecan population. Relative 7D4 levels in aggrecan and perlecan were highest in the newborn IVD and significantly lower in the older IVD and other cartilage samples. Quantitation of 7D4 proteoglycan by enzyme linked immunosorbent inhibition assay confirmed the newborn ovine nucleus pulposus (NP) and inner annulus fibrosus (AF) contained higher levels (1.2-1.32 μg 7-D-4-proteoglycan/mg tissue wet weight) than the 2 (0.35-0.42 μg/mg wet weight tissue) and 10 year old IVD samples (0.16-0.22 μg/mg tissue wet weight) with the outer AF zones consistently containing lower levels of 7-D-4 epitope in all cases (P < 0.001). Cell populations on the margins of the AF and cartilaginous vertebral rudiments in newborn ovine and human foetal IVD strongly expressed 7-D-4 CS epitope and perlecan, This was co-distributed with Notch-1 expression in human foetal IVDs consistent with the 7-D-4 CS sulphation motif representing a marker of tissue development expressed by disc progenitor cell populations.

Keywords

Intervertebral disc 7-D-4 CS sulphation motif Composite agarose polyacrylamide gel electrophoresis Progenitor cells Stem cell niche Tissue development marker 

Notes

Acknowledgments

This study was supported by NHMRC Project Grant 1004032.

References

  1. 1.
    Markolf, K.L., Morris, J.M.: The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J. Bone. Joint. Surg. Am. 56, 675–687 (1974)PubMedGoogle Scholar
  2. 2.
    Roughley, P.J., Melching, L.I., Heathfield, T.F., Pearce, R.H., Mort, J.S.: The structure and degradation of aggrecan in human intervertebral disc. Eur. Spine J. 15(Suppl 3), S326–S332 (2006)PubMedCrossRefGoogle Scholar
  3. 3.
    Melrose, J., Hayes, A.J., Whitelock, J.M., Little, C.B.: Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 30, 457–469 (2008)PubMedCrossRefGoogle Scholar
  4. 4.
    Melrose, J., Smith, S., Ghosh, P., Whitelock, J.: Perlecan, the multidomain heparan sulfate proteoglycan of basement membranes, is also a prominent component of the cartilaginous primordia in the developing human fetal spine. J. Histochem. Cytochem. 51, 1331–1341 (2003)PubMedCrossRefGoogle Scholar
  5. 5.
    Shu, C., Smith, S.S., Little, C.B., Melrose, J.: Comparative immunolocalisation of perlecan, heparan sulphate, fibroblast growth factor-18, and fibroblast growth factor receptor-3 and their prospective roles in chondrogenic and osteogenic development of the human foetal spine. Eur. Spine J. (2013)Google Scholar
  6. 6.
    Smith, S.M., Shu, C., Melrose, J.: Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem. Cell Biol. 134, 251–263 (2010)PubMedCrossRefGoogle Scholar
  7. 7.
    Smith, S.M., Whitelock, J.M., Iozzo, R.V., Little, C.B., Melrose, J.: Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem. Cell Biol. 132, 491–503 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    Whitelock, J., Melrose, J.: Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 739–751 (2011)PubMedCrossRefGoogle Scholar
  9. 9.
    Whitelock, J.M., Melrose, J., Iozzo, R.V.: Diverse cell signaling events modulated by perlecan. Biochemistry 47, 11174–11183 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    Ori, A., Wilkinson, M.C., Fernig, D.G.: A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J. Biol. Chem. 286, 19892–19904 (2011)PubMedCrossRefGoogle Scholar
  11. 11.
    Turnbull, J.E., Miller, R.L., Ahmed, Y., Puvirajesinghe, T.M., Guimond, S.E.: Glycomics profiling of heparan sulfate structure and activity. Methods Enzymol. 480, 65–85 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    Caterson, B.: Fell-Muir lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int. J. Exp. Pathol. 93, 1–10 (2012)PubMedCrossRefGoogle Scholar
  13. 13.
    Malavaki, C., Mizumoto, S., Karamanos, N., Sugahara, K.: Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect Tissue Res. 49, 133–139 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    Nandini, C.D., Sugahara, K.: Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv. Pharmacol. 53, 253–279 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    Purushothaman, A., Sugahara, K., Faissner, A.: Chondroitin sulfate “wobble motifs” modulate maintenance and differentiation of neural stem cells and their progeny. J. Biol. Chem. 287, 2935–2942 (2012)PubMedCrossRefGoogle Scholar
  16. 16.
    Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., Kitagawa, H.: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    Asada, M., Shinomiya, M., Suzuki, M., Honda, E., Sugimoto, R., Ikekita, M., et al.: Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta 1790, 40–48 (2009)PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings, R.D.: The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    Maeda, N., Fukazawa, N., Hata, T.: The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J. Biol. Chem. 281, 4894–4902 (2006)PubMedCrossRefGoogle Scholar
  20. 20.
    Miller, R.E., Grodzinsky, A.J., Cummings, K., Plaas, A.H., Cole, A.A., Lee, R.T., et al.: Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 62, 3686–3694 (2010)PubMedCrossRefGoogle Scholar
  21. 21.
    Couchman, J.R., Tapanadechopone, P.: Detection of proteoglycan core proteins with glycosaminoglycan lyases and antibodies. Methods Mol. Biol. 171, 329–333 (2001)PubMedGoogle Scholar
  22. 22.
    Sorrell, J.M., Lintala, A.M., Mahmoodian, F., Caterson, B.: Indirect immunocytochemical localisation of chondroitin sulphate proteoglycans in lymphopoietic and granulopoietic compartments of developing bursae of fabricus. J. Immunology 140, 4263–4270 (1988)Google Scholar
  23. 23.
    Sorrell, J.M., Mahmoodian, F., Schafer, I.A., Davis, B., Caterson, B.: Identification of monoclonal antibodies that recognize novel epitopes in native chondroitin/dermatan sulfate glycosaminoglycan chains: their use in mapping functionally distinct domains of human skin. J. Histochem. Cytochem. 38, 393–402 (1990)PubMedCrossRefGoogle Scholar
  24. 24.
    Couchman, J.R., Caterson, B., Christner, J.E., Baker, J.R.: Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307, 650–652 (1984)PubMedCrossRefGoogle Scholar
  25. 25.
    Caterson, B., Calabro, T., Hampton, A.: Monoclonal antibodies as probes for elucidating proteoglycan structure and function. In: Wight, T., Mecham, R. (eds.) Biology of the Extracellular Matrix: A Series, Biology of Proteoglycans. Academic, New York (1987)Google Scholar
  26. 26.
    Dowthwaite, G.P., Bishop, J.C., Redman, S.N., Khan, I.M., Rooney, P., Evans, D.J., et al.: The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    Rees, S.G., Dent, C.M., Caterson, B.: Metabolism of proteoglycans in tendon. Scand J. Med. Sci. Sports. 19, 470–478 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    Rees, S.G., Flannery, C.R., Little, C.B., Hughes, C.E., Caterson, B., Dent, C.M.: Catabolism of aggrecan, decorin and biglycan in tendon. Biochem. J. 350(Pt 1), 181–188 (2000)PubMedCrossRefGoogle Scholar
  29. 29.
    Rees, S.G., Waggett, A.D., Kerr, B.C., Probert, J., Gealy, E.C., Dent, C.M., et al.: Immunolocalisation and expression of keratocan in tendon. Osteoarthr. Cartil. 17, 276–279 (2009)PubMedCrossRefGoogle Scholar
  30. 30.
    Hayes, A.J., Benjamin, M., Ralphs, J.R.: Extracellular matrix in development of the intervertebral disc. Matrix Biol. 20, 107–121 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes, A.J., Hughes, C.E., Ralphs, J.R., Caterson, B.: Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc. Eur. Cell Mater. 21, 1–14 (2011)PubMedGoogle Scholar
  32. 32.
    Caterson, B., Mahmoodian, F., Sorrell, J.M., Hardingham, T.E., Bayliss, M.T., Carney, S.L., et al.: Modulation of native chondroitin sulphate structure in tissue development and in disease. J. Cell Sci. 97(Pt 3), 411–417 (1990)PubMedGoogle Scholar
  33. 33.
    Henriksson, H., Thornemo, M., Karlsson, C., Hagg, O., Junevik, K., Lindahl, A., et al.: Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976) 34, 2278–2287 (2009)CrossRefGoogle Scholar
  34. 34.
    Henriksson, H.B., Svala, E., Skioldebrand, E., Lindahl, A., Brisby, H.: Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zeeland white rabbit. Spine (Phila Pa 1976) (2011)Google Scholar
  35. 35.
    Henriksson, H.B., Svala, E., Skioldebrand, E., Lindahl, A., Brisby, H.: Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila Pa 1976) 37, 722–732 (2012)CrossRefGoogle Scholar
  36. 36.
    Risbud, M.V., Shapiro, I.M.: Notochordal cells in the adult intervertebral disc: new perspective on an old question. Crit. Rev. Eukaryot. Gene Expr. 21, 29–41 (2011)PubMedCrossRefGoogle Scholar
  37. 37.
    Risbud, M.V., Shapiro, I.M., Vaccaro, A.R., Albert, T.J.: Stem cell regeneration of the nucleus pulposus. Spine J. 4, 348S–353S (2004)PubMedCrossRefGoogle Scholar
  38. 38.
    Hayes, A.J., Hall, A., Brown, L., Tubo, R., Caterson, B.: Macromolecular organization and in vitro growth characteristics of scaffold-free neocartilage grafts. J. Histochem. Cytochem. 55, 853–866 (2007)PubMedCrossRefGoogle Scholar
  39. 39.
    Hayes, A.J., Tudor, D., Nowell, M.A., Caterson, B., Hughes, C.E.: Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem. 56, 125–138 (2008)PubMedCrossRefGoogle Scholar
  40. 40.
    Matsumoto, K., Kamiya, N., Suwan, K., Atsumi, F., Shimizu, K., Shinomura, T., et al.: Identification and characterization of versican/PG-M aggregates in cartilage. J. Biol. Chem. 281, 18257–18263 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Melrose, J., Isaacs, M.D., Smith, S.M., Hughes, C.E., Little, C.B., Caterson, B., et al.: Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem. Cell Biol. 138, 461–475 (2012)PubMedCrossRefGoogle Scholar
  42. 42.
    Slater Jr., R.R., Bayliss, M.T., Lachiewicz, P.F., Visco, D.M., Caterson, B.: Monoclonal antibodies that detect biochemical markers of arthritis in humans. Arthritis Rheum. 38, 655–659 (1995)PubMedCrossRefGoogle Scholar
  43. 43.
    Visco, D.M., Johnstone, B., Hill, M.A., Jolly, G.A., Caterson, B.: Immunohistochemical analysis of 3-B-(-) and 7-D-4 epitope expression in canine osteoarthritis. Arthritis Rheum. 36, 1718–1725 (1993)PubMedCrossRefGoogle Scholar
  44. 44.
    Khan, I.M., Williams, R., Archer, C.W.: One flew over the progenitor’s nest: migratory cells find a home in osteoarthritic cartilage. Cell Stem Cell. 4, 282–284 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    Tesche, F., Miosge, N.: Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr. Cartil. 12, 852–862 (2004)PubMedCrossRefGoogle Scholar
  46. 46.
    Tesche, F., Miosge, N.: New aspects of the pathogenesis of osteoarthritis: the role of fibroblast-like chondrocytes in late stages of the disease. Histol. Histopathol. 20, 329–337 (2005)PubMedGoogle Scholar
  47. 47.
    Melrose, J., Roughley, P., Knox, S., Smith, S., Lord, M., Whitelock, J.: The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J. Biol. Chem. 281, 36905–36914 (2006)PubMedCrossRefGoogle Scholar
  48. 48.
    Melrose, J., Smith, S., Cake, M., Read, R., Whitelock, J.: Spatial and temporal immunolocalisation of perlecan in the ovine meniscus. Histochem. Cell Biol. 124, 225–235 (2005)PubMedCrossRefGoogle Scholar
  49. 49.
    Melrose, J., Smith, S., Whitelock, J.: Perlecan immunolocalises to perichondral vessels and canals in human foetal cartilagenous promordia in early vascular and matrix remodelling events associated with diarthrodial-joint development. J. Histochem. Cytochem. 52, 1405–1413 (2004)PubMedCrossRefGoogle Scholar
  50. 50.
    Valiyaveettil, M., Mort, J.S., McDevitt, C.A.: The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint. Connect Tissue Res. 46, 83–91 (2005)PubMedCrossRefGoogle Scholar
  51. 51.
    Gibson, G., Lin, D.L., Francki, K., Caterson, B., Foster, B.: Type X collagen is colocalized with a proteoglycan epitope to form distinct morphological structures in bovine growth cartilage. Bone 19, 307–315 (1996)PubMedCrossRefGoogle Scholar
  52. 52.
    Khan, I.M., Palmer, E.A., Archer, C.W.: Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthr. Cartil. 18, 208–219 (2010)PubMedCrossRefGoogle Scholar
  53. 53.
    Melrose, J., Ghosh, P., Taylor, T.K.: Proteoglycan heterogeneity in the normal adult ovine intervertebral disc. Matrix Biol. 14, 61–75 (1994)PubMedCrossRefGoogle Scholar
  54. 54.
    Melrose, J., Little, C.B., Ghosh, P.: Detection of aggregatable proteoglycan populations by affinity blotting using biotinylated hyaluronan. Anal. Biochem. 256, 149–157 (1998)PubMedCrossRefGoogle Scholar
  55. 55.
    Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)PubMedCrossRefGoogle Scholar
  56. 56.
    Knox, S., Melrose, J., Whitelock, J.: Electrophoretic, biosensor, and bioactivity analyses of perlecans of different cellular origins. Proteomics 1, 1534–1541 (2001)PubMedCrossRefGoogle Scholar
  57. 57.
    Melrose, J., Smith, S., Cake, M., Read, R., Whitelock, J.: Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem. Cell Biol. 123, 561–571 (2005)PubMedCrossRefGoogle Scholar
  58. 58.
    Hill, M.A., Kincaid, S.A., Visco, D.M.: Use of histochemical techniques in the characterisation of osteochondroses affecting pigs. Vet. Rec. 127, 29–37 (1990)PubMedGoogle Scholar
  59. 59.
    Lin, P.P., Buckwalter, J.A., Olmstead, M., Caterson, B.: Expression of proteoglycan epitopes in articular cartilage repair tissue. Iowa Orthop. J. 18, 12–18 (1998)PubMedGoogle Scholar
  60. 60.
    Bayliss, M.T., Osborne, D., Woodhouse, S., Davidson, C.: Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J. Biol. Chem. 274, 15892–15900 (1999)PubMedCrossRefGoogle Scholar
  61. 61.
    Plaas, A.H., West, L.A., Wong-Palms, S., Nelson, F.R.: Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J. Biol. Chem. 273, 12642–12649 (1998)PubMedCrossRefGoogle Scholar
  62. 62.
    West, L.A., Roughley, P., Nelson, F.R., Plaas, A.H.: Sulphation heterogeneity in the trisaccharide (GalNAcSbeta1, 4GlcAbeta1,3GalNAcS) isolated from the non-reducing terminal of human aggrecan chondroitin sulphate. Biochem. J. 342(Pt 1), 223–229 (1999)PubMedCrossRefGoogle Scholar
  63. 63.
    Yasen, M., Fei, Q., Hutton, W.C., Zhang, J., Dong, J., Jiang, X., et al.: Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs. Acta. Biochim. Biophys. Sin. (Shanghai) (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cindy Shu
    • 1
  • Clare Hughes
    • 2
  • Susan M. Smith
    • 1
  • Margaret M. Smith
    • 1
  • Anthony Hayes
    • 2
  • Bruce Caterson
    • 2
  • Christopher B. Little
    • 1
  • James Melrose
    • 1
    • 3
    Email author
  1. 1.Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical ResearchRoyal North Shore Hospital and University of SydneySt. LeonardsAustralia
  2. 2.School of BiosciencesUniversity of CardiffCardiffUK
  3. 3.Raymond Purves Bone and Joint Research Laboratories, Level 10, Kolling Institute of Medical Research B6The Royal North Shore HospitalSt. LeonardsAustralia

Personalised recommendations