Glycoconjugate Journal

, Volume 30, Issue 6, pp 619–632 | Cite as

Interaction of chondroitin sulfate and dermatan sulfate from various biological sources with heparin-binding growth factors and cytokines

  • Shuji Mizumoto
  • Duriya Fongmoon
  • Kazuyuki SugaharaEmail author


Chondroitin sulfate (CS) and dermatan sulfate (DS) interact with various extracellular molecules such as growth factors, cytokines/chemokines, neurotrophic factors, morphogens, and viral proteins, thereby playing roles in a variety of biological processes including cell adhesion, proliferation, tissue morphogenesis, neurite outgrowth, infections, and inflammation/leukocyte trafficking. CS/DS are modified with sulfate groups at C-2 of uronic acid residues as well as C-4 and/or C-6 of N-acetyl-D-galactosamine residues, yielding enormous structural diversity, which enables the binding with numerous proteins. We have demonstrated that highly sulfated CS-E from squid cartilage, for example, interacts with heparin-binding proteins including midkine, pleiotrophin, and fibroblast growth factors expressed in brain with high affinity (Kd values in the nM range). Here, we analyzed the binding of CS and DS, which have a relatively low degree of sulfation and have been widely used as a nutraceutical and a drug for osteoarthritis etc., with a number of heparin-binding neurotrophic factors/cytokines using surface plasmon resonance (SPR) and structurally characterized the CS/DS chains. SPR showed that relatively low sulfated CS-A, DS, and CS-C also bound with significant affinity to midkine, pleiotrophin, hepatocyte growth factor, monokine-induced by interferon-γ, and stromal cell derived factor-1β, although the binding was less intense than that with highly sulfated CS-D and CS-E. These findings suggest that even low sulfated CS and/or DS chains may contain binding domains, which include fine sugar sequences with specific sulfation patterns, and that sugar sequences, conformations and electrostatic potential are more important than the simple degree of sulfation represented by disaccharide composition.


Chondroitin sulfate Dermatan sulfate Growth factors Cytokines Interaction analysis Surface plasmon resonance 



Chondroitin sulfate


Dermatan sulfate


Fibroblast growth factor




Human immunodeficiency virus


Hepatocyte growth factor


Monokine-induced by interferon-γ








Regulated upon activation normal T cell express sequence


Stromal cell derived factor-1β


Surface plasmon resonance



This work was supported in part by Grants-in-aid for Scientific Research on Innovative Areas (24110501) (to K.S.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), Japan–Thailand Research Cooperative Program (to K. S.), Young Scientists (B) 23790066 (to S. M.) from the Japan Society for the Promotion of Science (JSPS), and the endowment from Zeria Pharmaceutical Co., Ltd.


  1. 1.
    Mizumoto, S., Uyama, T., Mikami, T., Kitagawa, H., Sugahara, K.: Biosynthetic pathways for differential expression of functional chondroitin sulfate and heparan sulfate. In: Yarema, K.J. (ed.) Handbook of Carbohydrate Engineering, pp. 289–324. CRC Press, Boca Raton (2005)Google Scholar
  2. 2.
    Sugahara, K., Kitagawa, H.: Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527 (2000)PubMedCrossRefGoogle Scholar
  3. 3.
    Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., Kitagawa, H.: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620 (2003)PubMedCrossRefGoogle Scholar
  4. 4.
    Sugahara, K., Mikami, T.: Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 17, 536–545 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Kawashima, H., Atarashi, K., Hirose, M., Hirose, J., Yamada, S., Sugahara, K., Miyasaka, M.: Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J. Biol. Chem. 277, 12921–12930 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    Thiele, H., Sakano, M., Kitagawa, H., Sugahara, K., Rajab, A., Hohne, W., Leschik, G., Nurnberg, P., Mundlos, S.: Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc. Natl. Acad. Sci. U. S. A. 101, 10155–10160 (2004)PubMedCrossRefGoogle Scholar
  7. 7.
    Bao, X., Muramatsu, T., Sugahara, K.: Demonstration of the pleiotrophin-binding oligosaccharide sequences isolated from chondroitin sulfate/dermatan sulfate hybrid chains of embryonic pig brains. J. Biol. Chem. 280, 35318–35328 (2005)PubMedCrossRefGoogle Scholar
  8. 8.
    Uyama, T., Ishida, M., Izumikawa, T., Trybala, E., Tufaro, F., Bergström, T., Sugahara, K., Kitagawa, H.: Chondroitin 4-O-sulfotransferase-1 regulates E disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity. J. Biol. Chem. 281, 38668–38674 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    Li, F., ten Dam, G.B., Murugan, S., Yamada, S., Hashiguchi, T., Mizumoto, S., Oguri, K., Okayama, M., van Kuppevelt, T.H., Sugahara, K.: Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells. J. Biol. Chem. 283, 34294–34304 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    Mizumoto, S., Takahashi, J., Sugahara, K.: Receptor for advanced glycation end products (RAGE) functions as a receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or the sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells. J. Biol. Chem. 287, 18985–18994 (2012)PubMedCrossRefGoogle Scholar
  11. 11.
    Miyake, N., Kosho, T., Mizumoto, S., Furuichi, T., Hatamochi, A., Nagashima, Y., Arai, E., Takahashi, K., Kawamura, R., Wakui, K., Takahashi, J., Kato, H., Yasui, H., Ishida, T., Ohashi, H., Nishimura, G., Shiina, M., Saitsu, H., Tsurusaki, Y., Doi, H., Fukushima, Y., Ikegawa, S., Yamada, S., Sugahara, K., Matsumoto, N.: Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum. Mutat. 31, 966–974 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    Deepa, S.S., Umehara, Y., Higashiyama, S., Itoh, N., Sugahara, K.: Specific interactions of oversulfated chondroitin sulfate E with various heparin- binding growth factors: implications as a physiological binding partner. J. Biol. Chem. 277, 43707–43716 (2002)PubMedCrossRefGoogle Scholar
  13. 13.
    Maeda, N., Fukazawa, N., Hata, T.: The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J. Biol. Chem. 281, 4894–4902 (2006)PubMedCrossRefGoogle Scholar
  14. 14.
    Toida, T., Sakai, S., Akiyama, H., Linhardt, R.J.: Immunological activity of chondroitin sulfate. In: Volpi, N. (ed.) Advances in Pharmacology, vol. 53, pp. 403–415. Elsevier, San Diego (2006)Google Scholar
  15. 15.
    Uebelhart, D., Knols, K., de Bruin, E.D., Verbruggen, G.: Treatment of knee osteoarthritis with oral chondroitin sulfate. In: Volpi, N. (ed.) Advances in Pharmacology, vol. 53, pp. 523–539. Elsevier, San Diego (2006)Google Scholar
  16. 16.
    Johnson, Z., Proudfoot, A.E., Handel, T.M.: Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev. 16, 625–636 (2005)PubMedCrossRefGoogle Scholar
  17. 17.
    Kinoshita, A., Sugahara, K.: Microanalysis of glycosaminoglycan-derived oligosaccharides labeled with the fluorophore 2-aminobenzamide by high-performance liquid chromatography: application to disaccharide composition analysis and exo-sequencing of oligosaccharides. Anal. Biochem. 269, 367–378 (1999)PubMedCrossRefGoogle Scholar
  18. 18.
    Conrad, H.E.: Degradation of heparan sulfate by nitrous acid. In: Iozzo, R.V. (ed.) Methods in Molecular Biology “Proteoglycan Protocols”, vol. 171, pp. 347–351. Humana Press, Totowa (2001)Google Scholar
  19. 19.
    Levy, J.A.: The unexpected pleiotropic activities of RANTES. J. Immunol. 182, 3945–3946 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    Farouk, S.S., Rader, D.J., Reilly, M.P., Mehta, N.N.: CXCL12: a new player in coronary disease identified through human genetics. Trends Cardiovasc. Med. 20, 204–209 (2010)PubMedCrossRefGoogle Scholar
  21. 21.
    Müller, M., Carter, S., Hofer, M.J., Campbell, I.L.: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathol. Appl. Neurobiol. 36, 368–387 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    Mizumoto, S., Sugahara, K.: Glycosaminoglycan chain analysis and characterization (Glycosylation/Epimerization). In: Rédini, F. (ed.) Methods in Molecular Biology, “Proteoglycans: Methods and Protocols”, vol. 836, pp. 99–115. Humana Press, Springer, New York (2012)Google Scholar
  23. 23.
    Bao, X., Nishimura, S., Mikami, T., Yamada, S., Itoh, N., Sugahara, K.: Chondroitin sulfate/dermatan sulfate hybrid chains from embryonic pig brain, which contain a higher proportion of L-iduronic acid than those from the adult pig brain, exhibit neuritogenic and growth factor-binding activities. J. Biol. Chem. 279, 9765–9776 (2004)PubMedCrossRefGoogle Scholar
  24. 24.
    Bitter, T., Muir, H.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)PubMedCrossRefGoogle Scholar
  25. 25.
    Imada, K., Oka, H., Kawasaki, D., Miura, N., Sato, T., Ito, A.: Anti-arthritic action mechanisms of natural chondroitin sulfate in human articular chondrocytes and synovial fibroblasts. Biol. Pharm. Bull. 33, 410–414 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    ten Dam, G.B., van de Westerlo, E.M., Purushothaman, A., Stan, R.V., Bulten, J., Sweep, F.C., Massuger, L.F., Sugahara, K., van Kuppevelt, T.H.: Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in VEGF binding. Am. J. Pathol. 171, 1324–1333 (2007)PubMedCrossRefGoogle Scholar
  27. 27.
    Lyon, M., Deakin, J.A., Rahmoune, H., Fernig, D.G., Nakamura, T., Gallagher, J.T.: Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulfate. J. Biol. Chem. 273, 271–278 (1998)PubMedCrossRefGoogle Scholar
  28. 28.
    Friand, V., Haddad, O., Papy-Garcia, D., Hlawaty, H., Vassy, R., Hamma-Kourbali, Y., Perret, G.Y., Courty, J., Baleux, F., Oudar, O., Gattegno, L., Sutton, A., Charnaux, N.: Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells. Glycobiology 19, 1511–1524 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    Shimazaki, Y., Nagata, I., Ishii, M., Tanaka, M., Marunouchi, T., Hata, T., Maeda, N.: Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cells. J. Neurosci. Res. 82, 172–183 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    Ishii, M., Maeda, N.: Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum. Glycobiology 18, 602–614 (2008)PubMedCrossRefGoogle Scholar
  31. 31.
    Conrad, H.E.: Heparin-Binding Proteins. Academic, San Diego (1998)Google Scholar
  32. 32.
    Zhang, F., McLellan, J.S., Ayala, A.M., Leahy, D.J., Linhardt, R.J.: Kinetic and structural studies on interactions between heparin or heparan sulfate and proteins of the hedgehog signaling pathway. Biochemistry 46, 3933–3941 (2007)PubMedCrossRefGoogle Scholar
  33. 33.
    Casu, B.: In: Garg, H.G., Linhardt, R.J., Hales, C.A. (eds.) Structure and Active Domains of Heparin: Chemistry and Biology of Heparin and Heparan Sulfate, pp. 1–28. Elsevier, Oxford (2005)CrossRefGoogle Scholar
  34. 34.
    Ai, X., Do, A.T., Lozynska, O., Kusche-Gullberg, M., Lindahl, U., Emerson Jr., C.P.: QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 162, 341–351 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    Nandini, C.D., Mikami, T., Ohta, M., Itoh, N., Akiyama-Nambu, F., Sugahara, K.: Structural and functional characterization of oversulfated chondroitin sulfate/dermatan sulfate hybrid chains from the notochord of hagfish: neuritogenic activity and binding activities toward growth factors and neurotrophic factors. J. Biol. Chem. 279, 50799–50809 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    Li, F., Shetty, A.K., Sugahara, K.: Neuritogenic activity of chondroitin/dermatan sulfate hybrid chains of embryonic pig brain and their mimicry from shark liver: involvement of the pleiotrophin and hepatocyte growth factor signaling pathways. J. Biol. Chem. 282, 2956–2966 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    Hashiguchi, T., Kobayashi, T., Fongmoon, D., Shetty, A.K., Mizumoto, S., Miyamoto, N., Nakamura, T., Yamada, S., Sugahara, K.: Demonstration of the hepatocyte growth factor signaling pathway in the in vitro neuritogenic activity of chondroitin sulfate from ray fish cartilage. Biochim. Biophys. Acta 1810, 406–413 (2011)PubMedCrossRefGoogle Scholar
  38. 38.
    Miyata, S., Komatsu, Y., Yoshimura, Y., Taya, C., Kitagawa, H.: Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat. Neurosci. 15, 414–422 (2012)PubMedCrossRefGoogle Scholar
  39. 39.
    Fukui, S., Feizi, T., Galustian, C., Lawson, A.M., Chai, W.: Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017 (2002)PubMedCrossRefGoogle Scholar
  40. 40.
    Yamaguchi, K., Tamaki, H., Fukui, S.: Detection of oligosaccharide ligands for hepatocyte growth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7), RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj. J. 23, 513–523 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Li, F., Nandini, C.D., Hattori, T., Bao, X., Murayama, D., Nakamura, T., Fukushima, N., Sugahara, K.: Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches. J. Biol. Chem. 285, 27673–27685 (2010)PubMedCrossRefGoogle Scholar
  42. 42.
    Maeda, N., He, J., Yajima, Y., Mikami, T., Sugahara, K., Yabe, T.: Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/HB-GAM. J. Biol. Chem. 278, 35805–35811 (2003)PubMedCrossRefGoogle Scholar
  43. 43.
    Ito, Y., Hikino, M., Yajima, Y., Mikami, T., Sirko, L., von Holst, A., Faissner, A., Fukui, S., Sugahara, K.: Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56 and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library. Glycobiology 15, 593–603 (2005)PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsunaga, C., Mikami, T., Mizumoto, S., Fukuda, J., Sugahara, K.: Chondroitin sulfate/dermatan sulfate hybrid chains in the development of cerebellum: Spatiotemporal regulation of the expression of critical disulfated disaccharides by specific sulfotransferases. J. Biol. Chem. 281, 18942–18952 (2006)PubMedCrossRefGoogle Scholar
  45. 45.
    Handel, T.M., Johnson, Z., Crown, S.E., Lau, E.K., Proudfoot, A.E.: Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005)PubMedCrossRefGoogle Scholar
  46. 46.
    Hileman, R.E., Fromm, J.R., Weiler, J.M., Linhardt, R.J.: Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156–167 (1998)PubMedCrossRefGoogle Scholar
  47. 47.
    Appay, V., Rowland-Jones, S.L.: RANTES: a versatile and controversial chemokine. Trends Immunol 22, 83–87 (2001)PubMedCrossRefGoogle Scholar
  48. 48.
    Proudfoot, A.E., Fritchley, S., Borlat, F., Shaw, J.P., Vilbois, F., Zwahlen, C., Trkola, A., Marchant, D., Clapham, P.R., Wells, T.N.: The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J. Biol. Chem. 276, 10620–10626 (2001)PubMedCrossRefGoogle Scholar
  49. 49.
    Martin, L., Blanpain, C., Garnier, P., Wittamer, V., Parmentier, M., Vita, C.: Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 40, 6303–6318 (2001)PubMedCrossRefGoogle Scholar
  50. 50.
    Farber, J.M.: A macrophage mRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines. Proc. Natl. Acad. Sci. U. S. A. 87, 5238–5242 (1990)PubMedCrossRefGoogle Scholar
  51. 51.
    Sgadari, C., Farber, J.M., Angiolillo, A.L., Liao, F., Teruya-Feldstein, J., Burd, P.R., Yao, L., Gupta, G., Kanegane, C., Tosato, G.: Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 89, 2635–2643 (1997)PubMedGoogle Scholar
  52. 52.
    Schwartz, G.N., Liao, F., Gress, R.E., Farber, J.M.: Suppressive effects of recombinant human monokine induced by IFN-γ (rHuMig) chemokine on the number of committed and primitive hemopoietic progenitors in liquid cultures of CD34+ human bone marrow cells. J. Immunol. 159, 895–904 (1997)PubMedGoogle Scholar
  53. 53.
    Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J.M., Clark-Lewis, I., Legler, D.F., Loetscher, M., Baggiolini, M., Moser, B.: The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835 (1996)PubMedCrossRefGoogle Scholar
  54. 54.
    Omata, T., Segawa, Y., Itokazu, Y., Inoue, N., Tanaka, Y.: Effects of chondroitin sulfate-C on bradykinin-induced proteoglycan depletion in rats. Arzneimittelforschung 49, 577–581 (1999)PubMedGoogle Scholar
  55. 55.
    Beren, J., Hill, S.L., Diener-West, M., Rose, N.R.: Effect of pre-loading oral glucosamine HCl/chondroitin sulfate/manganese ascorbate combination on experimental arthritis in rats. Exp. Biol. Med. 226, 144–151 (2001)Google Scholar
  56. 56.
    Kahan, A., Uebelhart, D., De Vathaire, F., Delmas, P.D., Reginster, J.Y.: Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 60, 524–533 (2009)PubMedCrossRefGoogle Scholar
  57. 57.
    Clegg, D.O., Reda, D.J., Harris, C.L., Klein, M.A., O’Dell, J.R., Hooper, M.M., Bradley, J.D., Bingham 3rd, C.O., Weisman, M.H., Jackson, C.G., Lane, N.E., Cush, J.J., Moreland, L.W., Schumacher Jr., H.R., Oddis, C.V., Wolfe, F., Molitor, J.A., Yocum, D.E., Schnitzer, T.J., Furst, D.E., Sawitzke, A.D., Shi, H., Brandt, K.D., Moskowitz, R.W., Williams, H.J.: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 354, 795–808 (2006)PubMedCrossRefGoogle Scholar
  58. 58.
    Cho, S.Y., Sim, J.S., Jeong, S.C., Chang, S.Y., Choi, D.W., Toida, T., Kim, Y.S.: Effects of low molecular weight chondroitin sulfate on type II collagen-induced arthritis in DBA/1 J mice. Biol. Pharm. Bull. 27, 47–51 (2004)PubMedCrossRefGoogle Scholar
  59. 59.
    Lamari, F.N., Theocharis, A.D., Asimakopoulou, A.P., Malavaki, C.J., Karamanos, N.K.: Metabolism and biochemical/physiological roles of chondroitin sulfates: analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed. Chromatogr. 20, 539–550 (2006)PubMedCrossRefGoogle Scholar
  60. 60.
    Jain, A., Gupta, Y., Jain, K.: Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J. Pharm. Pharm. Sci. 10, 86–128 (2007)PubMedGoogle Scholar
  61. 61.
    Theoharides, T.C., Patra, P., Boucher, W., Letourneau, R., Kempuraj, D., Chiang, G., Jeudy, S., Hasse, L., Athanasiou, A.: Chondroitin sulphate inhibits connective tissue mast cells. Br. J. Pharmacol. 131, 1039–1049 (2000)PubMedCrossRefGoogle Scholar
  62. 62.
    McCarty, M.F., Russell, A.L., Seed, M.P.: Sulfated glycosaminoglycans and glucosamine may synergize in promoting synovial hyaluronic acid synthesis. Med. Hypotheses 54, 798–802 (2000)PubMedCrossRefGoogle Scholar
  63. 63.
    Sakai, S., Akiyama, H., Sato, Y., Yoshioka, Y., Linhardt, R.J., Goda, Y., Maitani, T., Toida, T.: Chondroitin sulfate intake inhibits the IgE-mediated allergic response by down-regulating Th2 responses in mice. J. Biol. Chem. 281, 19872–19880 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Shuji Mizumoto
    • 1
  • Duriya Fongmoon
    • 1
    • 2
  • Kazuyuki Sugahara
    • 1
    Email author
  1. 1.Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and TechnologyHokkaido University Graduate School of Life ScienceSapporoJapan
  2. 2.Department of Medical Services, Ministry of Public HealthThe Lampang Cancer HospitalLampangThailand

Personalised recommendations