Glycoconjugate Journal

, Volume 30, Issue 1, pp 77–84 | Cite as

Therapies and therapeutic approaches in Congenital Disorders of Glycosylation

Article

Abstract

Inborn errors in glycoconjugate biosynthesis termed ‘Congenital Disorders of Glycosylation’ (CDG) comprise a rapidly expanding group of metabolic diseases in man. Up till now more than 60 different inherited disorders in N- and O-glycosylation pathways have been identified. They affect the biosynthesis of glycan moieties linked to proteins as well as lipids. Due to failures in protein glycosylation, CDG patients suffer from multi systemic disorders, which mostly present with severe psychomotor and mental retardations, muscular impairment, ataxia, failure to thrive and developmental delay. Although improved biochemical and genetic investigations led to identification of a variety of new molecular defects in glycoconjugate biosynthesis, effective therapies for most types of the CDG are so far not available. Therefore, intensive investigations on treatment options for this group of diseases have been carried out in recent years.

Keywords

Congenital Disorders of Glycosylation N-glycosylation O-glycosylation Glycosylation deficiency Therapy Therapeutic approaches 

Notes

Acknowledgments

The work of C.T. and C.K. was supported by grants of the Deutsche Forschungsgemeinschaft (KO2152/1-3 and TH1461/2-1), the Else Kröner-Fresenius-Stiftung (2010_A89) and the Baden-Württemberg Stiftung (P-BWS-Glyko/04).

References

  1. 1.
    Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation-potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005)PubMedCrossRefGoogle Scholar
  2. 2.
    Moskal, J.R., Kroes, R.A., Dawson, G.: The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev. Neurother. 9, 1529–1545 (2009)PubMedCrossRefGoogle Scholar
  3. 3.
    Schachter, H., Freeze, H.H.: Glycosylation diseases: quo vadis? Biochim. Biophys. Acta 1792, 925–930 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    Jaeken, J.: Congenital disorders of glycosylation (CDG): it’s (nearly) all in it! J. Inherit. Metab. Dis. 34, 853–858 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    Theodore, M., Morava, E.: Congenital disorders of glycosylation: sweet news. Curr. Opin. Pediatr. 23, 581–587 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    Bertini, E., D’Amico, A., Gualandi, F., Petrini, S.: Congenital muscular dystrophies: a brief review. Semin. Pediatr. Neurol. 18, 277–288 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    Jaeken, J.: Congenital disorders of glycosylation. Ann. NY Acad. Sci. 1214, 190–198 (2010)PubMedCrossRefGoogle Scholar
  8. 8.
    Niehues, R., Hasilik, M., Alton, G., Körner, C., Schiebe-Sukumar, M., Koch, H.G., Zimmer, K.P., Wu, R., Harms, E., Reiter, K., von Figura, K., Freeze, H.H., Harms, H.K., Marquardt, T.: Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 101, 1414–1420 (1998)PubMedCrossRefGoogle Scholar
  9. 9.
    Haeuptle, M.A., Hennet, T.: Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum. Mutat. 30, 1628–1641 (2009)PubMedCrossRefGoogle Scholar
  10. 10.
    de Lonlay, P., Seta, N.: The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim. Biophys. Acta 1792, 841–843 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    Mention, K., Lacaille, F., Valayannopoulos, V., Romano, S., Kuster, A., Cretz, M., Zaidan, H., Galmiche, L., Jaubert, F., de Keyzer, Y., Seta, N., de Lonlay, P.: Development of liver disease despite mannose treatment in two patients with CDG-Ib. Mol. Genet. Metab. 93, 40–43 (2008)PubMedCrossRefGoogle Scholar
  12. 12.
    Alton, G., Kjaergaard, S., Etchison, J.R., Skovby, F., Freeze, H.H.: Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med. 60, 127–133 (1997)PubMedCrossRefGoogle Scholar
  13. 13.
    Wood, F.C., Cahill, G.F.: Mannose utilization in man. J. Clin. Invest. 42, 1300–1312 (1963)PubMedCrossRefGoogle Scholar
  14. 14.
    DeRossi, C., Bode, L., Eklund, E.A., Zhang, F., Davis, J.A., Westphal, V., Wang, L., Borowsky, A.D., Freeze, H.H.: Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J. Biol. Chem. 281, 5916–5927 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    Sols, A., Cadenas, E., Alvarado, F.: Enzymatic basis of mannose toxicity in honey bees. Science 131, 297–298 (1960)PubMedCrossRefGoogle Scholar
  16. 16.
    de la Fuente, M., Peñas, P.F., Sols, A.: Mechanism of mannose toxicity. Biochem. Biophys. Res. Commun. 140, 51–55 (1986)PubMedCrossRefGoogle Scholar
  17. 17.
    Harms, H.K., Zimmer, K.P., Kurnik, K., Bertele-Harms, R.M., Weidinger, S., Reiter, K.: Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr. 91, 1065–1072 (2002)PubMedCrossRefGoogle Scholar
  18. 18.
    Schroeder, A.S., Kappler, M., Bonfert, M., Borggraefe, I., Schoen, C., Reiter, K.: Seizures and stupor during intravenous mannose therapy in a patient with CDG syndrome type 1b (MPI-CDG). J. Inherit. Metab. Dis. (2011). doi:10.1007/s10545-010-9252-x
  19. 19.
    Liem, Y.S., Bode, L., Freeze, H.H., Leebeek, F.W., Zandbergen, A.A., Paul Wilson, J.: Using heparin therapy to reverse protein-losing enteropathy in a patient with CDG-Ib. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 220–224 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Etzioni, A., Frydman, M., Pollack, S., Avidor, I., Phillips, M.L., Paulson, J.C., Gershoni-Baruch, R.: Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N. Engl. J. Med. 327, 1789–1792 (1992)PubMedCrossRefGoogle Scholar
  21. 21.
    Lübke, T., Marquardt, T., Etzioni, A., Hartmann, E., von Figura, K., Körner, C.: Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat. Genet. 28, 73–76 (2001)PubMedGoogle Scholar
  22. 22.
    Lühn, K., Wild, M.K., Eckhardt, M., Gerardy-Schahn, R., Vestweber, D.: The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat. Genet. 28, 69–72 (2001)PubMedGoogle Scholar
  23. 23.
    Lübke, T., Marquardt, T., von Figura, K., Körner, C.: A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J. Biol. Chem. 274, 25986–25989 (1999)PubMedCrossRefGoogle Scholar
  24. 24.
    Marquardt, T., Brune, T., Lühn, K., Zimmer, K.P., Körner, C., Fabritz, L., van der Werft, N., Vormoor, J., Freeze, H.H., Louwen, F., Biermann, B., Harms, E., von Figura, K., Vestweber, D., Koch, H.G.: Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J. Pediatr. 134, 681–688 (1999)PubMedCrossRefGoogle Scholar
  25. 25.
    Etzioni, A., Tonetti, M.: Fucose supplementation in leukocyte adhesion deficiency type II. Blood 95, 3641–3643 (2000)PubMedGoogle Scholar
  26. 26.
    Hidalgo, A., Ma, S., Peired, A.J., Weiss, L.A., Cunningham-Rundles, C., Frenette, P.S.: Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 101, 1705–1712 (2003)PubMedCrossRefGoogle Scholar
  27. 27.
    Helmus, Y., Denecke, J., Yakubenia, S., Robinson, P., Lühn, K., Watson, D.L., McGrogan, P.J., Vestweber, D., Marquardt, T., Wild, M.K.: Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 107, 3959–3966 (2006)PubMedCrossRefGoogle Scholar
  28. 28.
    Marquardt, T., Lühn, K., Srikrishna, G., Freeze, H.H., Harms, E., Vestweber, D.: Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94, 3976–3985 (1999)PubMedGoogle Scholar
  29. 29.
    Sturla, L., Puglielli, L., Tonetti, M., Berninsone, P., Hirschberg, C.B., De Flora, A., Etzioni, A.: Impairment of the Golgi GDP-L-fucose transport and unresponsiveness to fucose replacement therapy in LAD II patients. Pediatr. Res. 49, 537–542 (2001)PubMedCrossRefGoogle Scholar
  30. 30.
    Lühn, K., Marquardt, T., Harms, E., Vestweber, D.: Discontinuation of fucose therapy in LADII causes rapid loss of selectin ligands and rise of leukocyte counts. Blood 97, 330–332 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    Wild, M.K., Lühn, K., Marquardt, T., Vestweber, D.: Leukocyte adhesion deficiency II: therapy and genetic defect. Cells Tissues Organs 172, 161–173 (2002)PubMedCrossRefGoogle Scholar
  32. 32.
    Hidalgo, A., Ma, S., Peired, A.J., Weiss, L.A., Cunningham-Rundles, C., Frenette, P.S.: Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 101, 1705–1712 (2003)PubMedCrossRefGoogle Scholar
  33. 33.
    Gazit, Y., Mory, A., Etzioni, A., Frydman, M., Scheuerman, O., Gershoni-Baruch, R., Garty, B.Z.: Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J. Clin. Immunol. 30, 308–313 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    Chantret, I., Dancourt, J., Dupré, T., Delenda, C., Bucher, S., Vuillaumier-Barrot, S., Ogier de Baulny, H., Peletan, C., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P., Moore, S.E.: A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J. Biol. Chem. 278, 9962–9971 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    Almeida, A.M., Murakami, Y., Layton, D.M., Hillmen, P., Sellick, G.S., Maeda, Y., Richards, S., Patterson, S., Kotsianidis, I., Mollica, L., Crawford, D.H., Baker, A., Ferguson, M., Roberts, I., Houlston, R., Kinoshita, T., Karadimitris, A.: Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat. Med. 12, 846–851 (2006)PubMedCrossRefGoogle Scholar
  36. 36.
    Almeida, A.M., Murakami, Y., Baker, A., Maeda, Y., Roberts, I.A., Kinoshita, T., Layton, D.M., Karadimitris, A.: Targeted therapy for inherited GPI deficiency. N. Engl. J. Med. 356, 1641–1647 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    Almeida, A., Layton, M., Karadimitris, A.: Inherited glycosylphosphatidyl inositol deficiency: a treatable CDG. Biochim. Biophys. Acta 1792, 874–880 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    Panneerselvam, K., Freeze, H.H.: Mannose corrects altered N-glycosylation in carbohydrate deficient glycoprotein syndrome fibroblasts. J. Clin. Invest. 97, 1478–1487 (1996)PubMedCrossRefGoogle Scholar
  39. 39.
    Körner, C., Lehle, L., von Figura, K.: Carbohydrate- deficient glycoprotein syndrome type 1: correction of the glycosylation defect by deprivation of glucose or supplementation of mannose. Glycoconj. J. 15, 499–505 (1998)PubMedCrossRefGoogle Scholar
  40. 40.
    Mayatepek, E., Kohlmüller, D.: Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency. Eur. J. Pediatr. 157, 605–606 (1998)PubMedCrossRefGoogle Scholar
  41. 41.
    Kjaergaard, S., Kristiansson, B., Stibler, H., Freeze, H.H., Schwartz, M., Martinsson, T., Skovby, F.: Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A. Acta Paediatr. 87, 884–888 (1998)PubMedCrossRefGoogle Scholar
  42. 42.
    Mayatepek, E., Schröder, M., Kohlmüller, D., Bieger, W.P., Nützenadel, W.: Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr. 86, 1138–1140 (1997)PubMedCrossRefGoogle Scholar
  43. 43.
    Rutschow, S., Thiem, J., Kranz, C., Marquardt, T.: Membrane-permeant derivatives of mannose-1-phosphate. Bioorg. Med. Chem. 10, 4043–4049 (2002)PubMedCrossRefGoogle Scholar
  44. 44.
    Eklund, E.A., Merbouh, N., Ichikawa, M., Nishikawa, A., Clima, J.M., Dorman, J.A., Norberg, T., Freeze, H.H.: Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts. Glycobiology 15, 1084–1093 (2005)PubMedCrossRefGoogle Scholar
  45. 45.
    Hardré, R., Khaled, A., Willemetz, A., Dupré, T., Moore, S., Gravier-Pelletier, C., Le Merrer, Y.: Mono, di and tri-mannopyranosyl phosphates as mannose-1-phosphate prodrugs for potential CDG-Ia therapy. Bioorg. Med. Chem. Lett. 17, 152–155 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    Shang, J., Lehrman, M.A.: Metformin-stimulated mannose transport in dermal fibroblasts. J. Biol. Chem. 279, 9703–9712 (2004)PubMedCrossRefGoogle Scholar
  47. 47.
    Dahl, R., Bravo, Y., Sharma, V., Ichikawa, M., Dhanya, R.P., Hedrick, M., Brown, B., Rascon, J., Vicchiarelli, M., Mangravita-Novo, A., Yang, L., Stonich, D., Su, Y., Smith, L.H., Sergienko, E., Freeze, H.H., Cosford, N.D.: Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia. J. Med. Chem. 54, 3661–3668 (2011)PubMedCrossRefGoogle Scholar
  48. 48.
    Sharma, V., Ichikawa, M., He, P., Bravo, Y., Dahl, R., Ng, B.G., Cosford, N.D., Freeze, H.H.: Phosphomannose isomerase inhibitors improve N-glycosylation in selected phosphomannomutase-deficient fibroblasts. J. Biol. Chem. 286, 39431–39438 (2011)PubMedCrossRefGoogle Scholar
  49. 49.
    Thiel, C., Körner, C.: Mouse models for congenital disorders of glycosylation. J. Inherit. Metab. Dis. 34, 879–889 (2011)PubMedCrossRefGoogle Scholar
  50. 50.
    Muntoni, F., Torelli, S., Wells, D.J., Brown, S.C.: Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr. Opin. Neurol. 24, 437–442 (2011)PubMedCrossRefGoogle Scholar
  51. 51.
    Ishikawa, H.O., Higashi, S., Ayukawa, T., Sasamura, T., Kitagawa, M., Harigaya, K., Aoki, K., Ishida, N., Sanai, Y., Matsuno, K.: Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc. Natl. Acad. Sci. USA 102, 18532–18537 (2005)PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura, N., Lyalin, D., Panin, V.M.: Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin. Cell Dev. Biol. 21, 622–630 (2010)PubMedCrossRefGoogle Scholar
  53. 53.
    Thornhill, P., Bassett, D., Lochmüller, H., Bushby, K., Straub, V.: Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain 131, 1551–1561 (2008)PubMedCrossRefGoogle Scholar
  54. 54.
    Song, Y., Willer, J.R., Scherer, P.C., Panzer, J.A., Kugath, A., Skordalakes, E., Gregg, R.G., Willer, G.B., Balice-Gordon, R.J.: Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS One 5, e13743 (2010)PubMedCrossRefGoogle Scholar
  55. 55.
    Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H., Endo, T., Tamaru, Y.: Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20, 1089–1102 (2010)PubMedCrossRefGoogle Scholar
  56. 56.
    Struwe, W.B., Hughes, B.L., Osborn, D.W., Boudreau, E.D., Shaw, K.M., Warren, C.E.: Modeling a congenital disorder of glycosylation type I in C. elegans: a genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology 19, 1554–1562 (2009)PubMedCrossRefGoogle Scholar
  57. 57.
    Struwe, W.B., Warren, C.E.: High-throughput RNAi screening for N-glycosylation dependent loci in Caenorhabditis elegans. Methods Enzymol. 480, 477–493 (2010)PubMedCrossRefGoogle Scholar
  58. 58.
    Schneider, A., Thiel, C., Rindermann, J., DeRossi, C., Popovici, D., Hoffmann, G.F., Gröne, H.J., Körner, C.: Successful prenatal mannose treatment for congenital disorder of glycosylation-Ia in mice. Nat. Med. 18, 71–73 (2012)CrossRefGoogle Scholar
  59. 59.
    Barresi, R., Michele, D.E., Kanagawa, M., Harper, H.A., Dovico, S.A., Satz, J.S., Moore, S.A., Zhang, W., Schachter, H., Dumanski, J.P., Cohn, R.D., Nishino, I., Campbell, K.P.: LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat. Med. 10, 696–703 (2004)PubMedCrossRefGoogle Scholar
  60. 60.
    Kanagawa, M., Nishimoto, A., Chiyonobu, T., Takeda, S., Miyagoe-Suzuki, Y., Wang, F., Fujikake, N., Taniguchi, M., Lu, Z., Tachikawa, M., Nagai, Y., Tashiro, F., Miyazaki, J., Tajima, Y., Takeda, S., Endo, T., Kobayashi, K., Campbell, K.P., Toda, T.: Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum. Mol. Genet. 18, 621–631 (2009)PubMedCrossRefGoogle Scholar
  61. 61.
    Brockington, M., Torelli, S., Sharp, P.S., Liu, K., Cirak, S., Brown, S.C., Wells, D.J., Muntoni, F.: Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle. PLoS One 5, e14434 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for Child and Adolescent Medicine, Center for Metabolic Diseases HeidelbergHeidelbergGermany

Personalised recommendations