Glycoconjugate Journal

, Volume 30, Issue 2, pp 89–117 | Cite as

Analytical glycobiology at high sensitivity: current approaches and directions

  • Milos V. Novotny
  • William R. AlleyJr.
  • Benjamin F. Mann
Article

Abstract

This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The need for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography.

Keywords

Biomolecular mass spectrometry Glycoproteomics Glycomics, affinity chromatography Lectin enrichment Permethylation, sialic acid linkage analysis Capillary electrophoresis 

Notes

Acknowledgments

Our research activities in analytical glycobiology and disease biomarker discovery have been supported by the following grants: 2R01GM024349 from the Institute of General Medical Sciences; 5U01CA128535 from the National Cancer Institute; and P41 RR018942 from the National Center of Research Resources, US Department of Health and Human Services.

References

  1. 1.
    van Ommen, B., Stierum, R.: Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol 13, 517–21 (2002)PubMedCrossRefGoogle Scholar
  2. 2.
    Kitano, H.: Systems biology: a brief overview. Science 295, 1662–4 (2002)PubMedCrossRefGoogle Scholar
  3. 3.
    van der Greef, J., Stroobant, P., van der Heijden, R.: The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 8, 559–65 (2004)PubMedCrossRefGoogle Scholar
  4. 4.
    Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology. Trends Microbiol 15, 45–50 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Gehlenborg, N., O'Donoghue, S.I., Baliga, N.S., Goesmann, A., Hibbs, M.A., Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenenbaum, D., Gavin, A.C.: Visualization of omics data for systems biology. Nat Methods 7, S56–68 (2010)PubMedCrossRefGoogle Scholar
  6. 6.
    Block, T.M., Comunale, M.A., Lowman, M., Steel, L.F., Romano, P.R., Fimmel, C., Tennant, B.C., London, W.T., Evans, A.A., Blumberg, B.S., Dwek, R.A., Mattu, T.S., Mehta, A.S.: Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A 102, 779–84 (2005)PubMedCrossRefGoogle Scholar
  7. 7.
    Kobata, A., Amano, J.: Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83, 429–39 (2005)PubMedCrossRefGoogle Scholar
  8. 8.
    Arnold, J.N., Saldova, R., Hamid, U.M., Rudd, P.M.: Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8, 3284–93 (2008)PubMedCrossRefGoogle Scholar
  9. 9.
    Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., et al.: Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)Google Scholar
  10. 10.
    Reis, C.A., Osorio, H., Silva, L., Gomes, C., David, L.: Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 63, 322–9 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    Meany, D.L., Chan, D.W.: Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 8, 7 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    Adamczyk, B., Tharmalingam, T., Rudd, P.M.: Glycans as cancer biomarkers. Biochim Biophys Acta (2011)Google Scholar
  13. 13.
    Szymanski, C.M., Wren, B.W.: Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3, 225–37 (2005)PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, X., McNally, D.J., Nothaft, H., Szymanski, C.M., Brisson, J.R., Li, J.: Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria. Anal Chem 78, 6081–7 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    Abu-Qarn, M., Eichler, J., Sharon, N.: Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 18, 544–50 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    Balonova, L., Hernychova, L., Mann, B.F., Link, M., Bilkova, Z., Novotny, M.V., Stulik, J.: Multimethodological approach to identification of glycoproteins from the proteome of Francisella tularensis, an intracellular microorganism. J Proteome Res 9, 1995–2005 (2010)PubMedCrossRefGoogle Scholar
  17. 17.
    Dell, A., Galadari, A., Sastre, F., Hitchen, P.: Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010, 148178 (2010)PubMedGoogle Scholar
  18. 18.
    Hitchen, P., Brzostek, J., Panico, M., Butler, J.A., Morris, H.R., Dell, A., Linton, D.: Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene. Microbiology 156, 1953–62 (2010)PubMedCrossRefGoogle Scholar
  19. 19.
    Balonova, L., Mann, B.F., Cerveny, L., Alley, W.R., Chovancova, E., Forslund, A.-L., Salomonsson, E., Forsberg, A., Damborsky, J., Novotny, M.V., Hernychova, L., Stulik, J.: Characterization of protein glycosylation in Francisella tularensis subsp. holarctica; identification of a novel glycosylated lipoprotein required for virulence. Mol Cell Proteomics (2012). doi: 10.1074/mcp.M111.015016
  20. 20.
    Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., Tomiya, N.: Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal Biochem 226, 139–46 (1995)PubMedCrossRefGoogle Scholar
  21. 21.
    Guile, G.R., Rudd, P.M., Wing, D.R., Prime, S.B., Dwek, R.A.: A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240, 210–26 (1996)PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, J.P., Shirota, O., Novotny, M.: Separation of fluorescent oligosaccharide derivatives by microcolumn techniques based on electrophoresis and liquid chromatography. J Chromatogr 559, 223–35 (1991)PubMedCrossRefGoogle Scholar
  23. 23.
    Liu, J.P., Shirota, O., Wiesler, D., Novotny, M.: Ultrasensitive fluorometric detection of carbohydrates as derivatives in mixtures separated by capillary electrophoresis. Proc Natl Acad Sci U S A 88, 2302–6 (1991)PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, F.T., Evangelista, R.A.: Analysis of mono- and oligosaccharide isomers derivatized with 9-aminopyrene-1,4,6-trisulfonate by capillary electrophoresis with laser-induced fluorescence. Anal Biochem 230, 273–80 (1995)PubMedCrossRefGoogle Scholar
  25. 25.
    Guttman, A., Chen, F.T., Evangelista, R.A.: Separation of 1-aminopyrene-3,6,8-trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis. Electrophoresis 17, 412–7 (1996)PubMedCrossRefGoogle Scholar
  26. 26.
    Guttman, A., Chen, F.T., Evangelista, R.A., Cooke, N.: High-resolution capillary gel electrophoresis of reducing oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonate. Anal Biochem 233, 234–42 (1996)PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper, C.A., Harrison, M.J., Wilkins, M.R., Packer, N.H.: GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources. Nucleic Acids Res 29, 332–5 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    Joshi, H.J., Harrison, M.J., Schulz, B.L., Cooper, C.A., Packer, N.H., Karlsson, N.G.: Development of a mass fingerprinting tool for automated interpretation of oligosaccharide fragmentation data. Proteomics 4, 1650–64 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    Sahoo, S.S., Thomas, C., Sheth, A., Henson, C., York, W.S.: GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydr Res 340, 2802–7 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7, 1650–9 (2008)PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes, C.A., Karlsson, N.G., Struwe, W.B., Lisacek, F., Rudd, P.M., Packer, N.H., Campbell, M.P.: UniCarb-DB: a database resource for glycomic discovery. Bioinformatics 27, 1343–4 (2011)PubMedCrossRefGoogle Scholar
  32. 32.
    Campbell, M.P., Hayes, C.A., Struwe, W.B., Wilkins, M.R., Aoki-Kinoshita, K.F., Harvey, D.J., Rudd, P.M., Kolarich, D., Lisacek, F., Karlsson, N.G., Packer, N.H.: UniCarbKB: putting the pieces together for glycomics research. Proteomics 11, 4117–21 (2011)PubMedCrossRefGoogle Scholar
  33. 33.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)PubMedCrossRefGoogle Scholar
  34. 34.
    Mallick, P., Kuster, B.: Proteomics: a pragmatic perspective. Nat Biotechnol 28, 695–709 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    Cox, J., Mann, M.: Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80, 273–99 (2011)PubMedCrossRefGoogle Scholar
  36. 36.
    Qian, W.J., Jacobs, J.M., Liu, T., Camp 2nd, D.G., Smith, R.D.: Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics 5, 1727–44 (2006)PubMedCrossRefGoogle Scholar
  37. 37.
    Dakna, M., He, Z., Yu, W.C., Mischak, H., Kolch, W.: Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: a critical assessment. J Chromatogr B Analyt Technol Biomed Life Sci 877, 1250–8 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    Li, Y., Champion, M.M., Sun, L., Champion, P.A., Wojcik, R., Dovichi, N.J.: Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal Chem 84, 1617–22 (2012)PubMedCrossRefGoogle Scholar
  39. 39.
    Tang, L.J., De Seta, F., Odreman, F., Venge, P., Piva, C., Guaschino, S., Garcia, R.C.: Proteomic analysis of human cervical-vaginal fluids. J Proteome Res 6, 2874–83 (2007)PubMedCrossRefGoogle Scholar
  40. 40.
    Tran, J.C., Doucette, A.A.: Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal Chem 80, 1568–73 (2008)PubMedCrossRefGoogle Scholar
  41. 41.
    Hongsachart, P., Huang-Liu, R., Sinchaikul, S., Pan, F.M., Phutrakul, S., Chuang, Y.M., Yu, C.J., Chen, S.T.: Glycoproteomic analysis of WGA-bound glycoprotein biomarkers in sera from patients with lung adenocarcinoma. Electrophoresis 30, 1206–20 (2009)PubMedCrossRefGoogle Scholar
  42. 42.
    Sandra, K., Moshir, M., D'Hondt, F., Verleysen, K., Kas, K., Sandra, P.: Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 866, 48–63 (2008)PubMedCrossRefGoogle Scholar
  43. 43.
    Sandra, K., Moshir, M., D'Hondt, F., Tuytten, R., Verleysen, K., Kas, K., Francois, I., Sandra, P.: Highly efficient peptide separations in proteomics. Part 2: bi- and multidimensional liquid-based separation techniques. J Chromatogr B Analyt Technol Biomed Life Sci 877, 1019–39 (2009)PubMedCrossRefGoogle Scholar
  44. 44.
    Luo, Q., Yue, G., Valaskovic, G.A., Gu, Y., Wu, S.L., Karger, B.L.: On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-microm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis. Anal Chem 79, 6174–81 (2007)PubMedCrossRefGoogle Scholar
  45. 45.
    Madera, M., Mechref, Y., Klouckova, I., Novotny, M.V.: Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J Proteome Res 5, 2348–63 (2006)PubMedCrossRefGoogle Scholar
  46. 46.
    Madera, M., Mann, B., Mechref, Y., Novotny, M.V.: Efficacy of glycoprotein enrichment by microscale lectin affinity chromatography. J Sep Sci 31, 2722–32 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    Mann, B., Madera, M., Sheng, Q., Tang, H., Mechref, Y., Novotny, M.V.: ProteinQuant Suite: a bundle of automated software tools for label-free quantitative proteomics. Rapid Commun Mass Spectrom 22, 3823–34 (2008)PubMedCrossRefGoogle Scholar
  48. 48.
    Mann, B., Madera, M., Klouckova, I., Mechref, Y., Dobrolecki, L.E., Hickey, R.J., Hammoud, Z.T., Novotny, M.V.: A quantitative investigation of fucosylated serum glycoproteins with application to esophageal adenocarcinoma. Electrophoresis 31, 1833–41 (2010)PubMedCrossRefGoogle Scholar
  49. 49.
    Yang, Z., Harris, L.E., Palmer-Toy, D.E., Hancock, W.S.: Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem 52, 1897–905 (2006)PubMedCrossRefGoogle Scholar
  50. 50.
    Plavina, T., Wakshull, E., Hancock, W.S., Hincapie, M.: Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J Proteome Res 6, 662–71 (2007)PubMedCrossRefGoogle Scholar
  51. 51.
    Mehta, A., Block, T.M.: Fucosylated glycoproteins as markers of liver disease. Dis Markers 25, 259–65 (2008)PubMedGoogle Scholar
  52. 52.
    Gornik, O., Lauc, G.: Glycosylation of serum proteins in inflammatory diseases. Dis Markers 25, 267–78 (2008)PubMedGoogle Scholar
  53. 53.
    Okuyama, N., Ide, Y., Nakano, M., Nakagawa, T., Yamanaka, K., Moriwaki, K., Murata, K., Ohigashi, H., Yokoyama, S., Eguchi, H., Ishikawa, O., Ito, T., Kato, M., Kasahara, A., Kawano, S., Gu, J., Taniguchi, N., Miyoshi, E.: Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer 118, 2803–8 (2006)PubMedCrossRefGoogle Scholar
  54. 54.
    Ceciliani, F., Pocacqua, V.: The acute phase protein alpha1-acid glycoprotein: a model for altered glycosylation during diseases. Curr Protein Pept Sci 8, 91–108 (2007)PubMedCrossRefGoogle Scholar
  55. 55.
    Mondal, G., Chatterjee, U., Das, H.R., Chatterjee, B.P.: Enhanced expression of alpha1-acid glycoprotein and fucosylation in hepatitis B patients provides an insight into pathogenesis. Glycoconj J 26, 1225–34 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    Fukushima, K., Satoh, T., Baba, S., Yamashita, K.: alpha1,2-Fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology 20, 452–60 (2010)PubMedCrossRefGoogle Scholar
  57. 57.
    Lin, Z., Simeone, D.M., Anderson, M.A., Brand, R.E., Xie, X., Shedden, K.A., Ruffin, M.T., Lubman, D.M.: Mass spectrometric assay for analysis of haptoglobin fucosylation in pancreatic cancer. J Proteome Res 10, 2602–11 (2011)PubMedCrossRefGoogle Scholar
  58. 58.
    Matsumoto, H., Shinzaki, S., Narisada, M., Kawamoto, S., Kuwamoto, K., Moriwaki, K., Kanke, F., Satomura, S., Kumada, T., Miyoshi, E.: Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin Chem Lab Med 48, 505–12 (2010)PubMedCrossRefGoogle Scholar
  59. 59.
    Miyoshi, E., Nakano, M.: Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 8, 3257–62 (2008)PubMedCrossRefGoogle Scholar
  60. 60.
    Madera, M., Mechref, Y., Klouckova, I., Novotny, M.V.: High-sensitivity profiling of glycoproteins from human blood serum through multiple-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 845, 121–37 (2007)PubMedCrossRefGoogle Scholar
  61. 61.
    Madera, M., Mechref, Y., Novotny, M.V.: Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77, 4081–90 (2005)PubMedCrossRefGoogle Scholar
  62. 62.
    Zeng, Z., Hincapie, M., Pitteri, S.J., Hanash, S., Schalkwijk, J., Hogan, J.M., Wang, H., Hancock, W.S.: A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 83, 4845–54 (2011)PubMedCrossRefGoogle Scholar
  63. 63.
    Wang, Y., Hancock, W.S., Weber, G., Eckerskorn, C., Palmer-Toy, D.: Free flow electrophoresis coupled with liquid chromatography-mass spectrometry for a proteomic study of the human cell line (K562/CR3). J Chromatogr A 1053, 269–78 (2004)PubMedGoogle Scholar
  64. 64.
    Wang, L., Li, F., Sun, W., Wu, S., Wang, X., Zhang, L., Zheng, D., Wang, J., Gao, Y.: Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5, 560–2 (2006)PubMedGoogle Scholar
  65. 65.
    Kreunin, P., Zhao, J., Rosser, C., Urquidi, V., Lubman, D.M., Goodison, S.: Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res 6, 2631–9 (2007)PubMedCrossRefGoogle Scholar
  66. 66.
    Gonzalez-Begne, M., Lu, B., Liao, L., Xu, T., Bedi, G., Melvin, J.E., Yates 3rd, J.R.: Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to multidimensional protein identification technology. J Proteome Res 10, 5031–46 (2011)PubMedCrossRefGoogle Scholar
  67. 67.
    Abbott, K.L., Lim, J.M., Wells, L., Benigno, B.B., McDonald, J.F., Pierce, M.: Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics 10, 470–81 (2010)PubMedCrossRefGoogle Scholar
  68. 68.
    Zhao, J., Simeone, D.M., Heidt, D., Anderson, M.A., Lubman, D.M.: Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res 5, 1792–802 (2006)PubMedCrossRefGoogle Scholar
  69. 69.
    Drake, R.R., Schwegler, E.E., Malik, G., Diaz, J., Block, T., Mehta, A., Semmes, O.J.: Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5, 1957–67 (2006)PubMedCrossRefGoogle Scholar
  70. 70.
    Qiu, R., Zhang, X., Regnier, F.E.: A method for the identification of glycoproteins from human serum by a combination of lectin affinity chromatography along with anion exchange and Cu-IMAC selection of tryptic peptides. J Chromatogr B Analyt Technol Biomed Life Sci 845, 143–50 (2007)PubMedCrossRefGoogle Scholar
  71. 71.
    Ahn, Y.H., Kim, K.H., Shin, P.M., Ji, E.S., Kim, H., Yoo, J.S.: Identification of low-abundance cancer biomarker candidate TIMP1 from serum with lectin fractionation and peptide affinity enrichment by ultrahigh-resolution mass spectrometry. Anal Chem 84, 1425–31 (2012)PubMedCrossRefGoogle Scholar
  72. 72.
    Mann, B.F., Goetz, J.A., House, M.G., Schmidt, C.M., Novotny, M.V.: Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the n-linked glycans of overexpressed glycoproteins. Mol. Cell. Proteomics (2012). doi: 10.1074/mcp.M111.015792
  73. 73.
    Gestwicki, J.E., Cairo, C.W., Strong, L.E., Oetjen, K.A., Kiessling, L.L.: Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 124, 14922–33 (2002)PubMedCrossRefGoogle Scholar
  74. 74.
    Mann, B.F., Mann, A.K.P., Skrabalak, S.E., Novotny, M.V.: Application of new macroporous silica microparticles for enhanced lectin affinity enrichment of glycoproteins. Manuscript in Preparation (2012)Google Scholar
  75. 75.
    Kaneko, Y., Nimmerjahn, F., Ravetch, J.V.: Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–3 (2006)PubMedCrossRefGoogle Scholar
  76. 76.
    Pucic, M., Knezevic, A., Vidic, J., Adamczyk, B., Novokmet, M., Polasek, O., Gornik, O., Supraha-Goreta, S., Wormald, M.R., Redzic, I., Campbell, H., Wright, A., Hastie, N.D., Wilson, J.F., Rudan, I., Wuhrer, M., Rudd, P.M., Josic, D., Lauc, G.: High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10, M111 010090 (2011)PubMedGoogle Scholar
  77. 77.
    Nilson, B.H., Solomon, A., Bjorck, L., Akerstrom, B.: Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267, 2234–9 (1992)PubMedGoogle Scholar
  78. 78.
    Svoboda, M., Mann, B.F., Goetz, J.A., Novotny, M.V.: Examination of glycan profiles from IgG-depleted human immunoglobulins facilitated by microscale affinity chromatography. Anal Chem 84, 3269–77 (2012)PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang, H., Li, X.J., Martin, D.B., Aebersold, R.: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21, 660–6 (2003)PubMedCrossRefGoogle Scholar
  80. 80.
    Ramachandran, P., Boontheung, P., Xie, Y., Sondej, M., Wong, D.T., Loo, J.A.: Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J Proteome Res 5, 1493–503 (2006)PubMedCrossRefGoogle Scholar
  81. 81.
    Liu, T., Qian, W.J., Gritsenko, M.A., Camp 2nd, D.G., Monroe, M.E., Moore, R.J., Smith, R.D.: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4, 2070–80 (2005)PubMedCrossRefGoogle Scholar
  82. 82.
    Liu, T., Qian, W.J., Gritsenko, M.A., Xiao, W., Moldawer, L.L., Kaushal, A., Monroe, M.E., Varnum, S.M., Moore, R.J., Purvine, S.O., Maier, R.V., Davis, R.W., Tompkins, R.G., Camp 2nd, D.G., Smith, R.D.: High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics 5, 1899–913 (2006)PubMedCrossRefGoogle Scholar
  83. 83.
    Lewandrowski, U., Moebius, J., Walter, U., Sickmann, A.: Elucidation of N-glycosylation sites on human platelet proteins: a glycoproteomic approach. Mol Cell Proteomics 5, 226–33 (2006)PubMedGoogle Scholar
  84. 84.
    Chen, C., Schmilovitz-Weiss, H., Liu, X.E., Pappo, O., Halpern, M., Sulkes, J., Braun, M., Cohen, M., Barak, N., Tur-Kaspa, R., Vanhooren, V., Van Vlierberghe, H., Libert, C., Contreras, R., Ben-Ari, Z.: Serum protein N-glycans profiling for the discovery of potential biomarkers for nonalcoholic steatohepatitis. J Proteome Res 8, 463–70 (2009)PubMedCrossRefGoogle Scholar
  85. 85.
    Wollscheid, B., Bausch-Fluck, D., Henderson, C., O'Brien, R., Bibel, M., Schiess, R., Aebersold, R., Watts, J.D.: Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27, 378–86 (2009)PubMedCrossRefGoogle Scholar
  86. 86.
    Lorand, J.P., Edwards, J.O.: Polyol complexes and structure of the benzeneboronate Ion. J Org Chem 24, 769–74 (1959)CrossRefGoogle Scholar
  87. 87.
    Rowan, S.J., Cantrill, S.J., Cousins, G.R., Sanders, J.K., Stoddart, J.F.: Dynamic covalent chemistry. Angew Chem Int Ed Engl 41, 898–952 (2002)PubMedCrossRefGoogle Scholar
  88. 88.
    Dowlut, M., Hall, D.G.: An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc 128, 4226–7 (2006)PubMedCrossRefGoogle Scholar
  89. 89.
    Tang, J., Liu, Y., Qi, D., Yao, G., Deng, C., Zhang, X.: On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 9, 5046–55 (2009)PubMedCrossRefGoogle Scholar
  90. 90.
    Xu, Y., Wu, Z., Zhang, L., Lu, H., Yang, P., Webley, P.A., Zhao, D.: Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 81, 503–8 (2009)PubMedCrossRefGoogle Scholar
  91. 91.
    Suksrichavalit, T., Yoshimatsu, K., Prachayasittikul, V., Bulow, L., Ye, L.: "Clickable" affinity ligands for effective separation of glycoproteins. J Chromatogr A 1217, 3635–41 (2010)PubMedCrossRefGoogle Scholar
  92. 92.
    Sparbier, K., Wenzel, T., Kostrzewa, M.: Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci 840, 29–36 (2006)PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang, Q., Schepmoes, A.A., Brock, J.W., Wu, S., Moore, R.J., Purvine, S.O., Baynes, J.W., Smith, R.D., Metz, T.O.: Improved methods for the enrichment and analysis of glycated peptides. Anal Chem 80, 9822–9 (2008)PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang, Q., Tang, N., Brock, J.W., Mottaz, H.M., Ames, J.M., Baynes, J.W., Smith, R.D., Metz, T.O.: Enrichment and analysis of nonenzymatically glycated peptides: boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. J Proteome Res 6, 2323–30 (2007)PubMedCrossRefGoogle Scholar
  95. 95.
    Laughlin, S.T., Bertozzi, C.R.: In vivo imaging of Caenorhabditis elegans glycans. ACS Chem Biol 4, 1068–72 (2009)PubMedCrossRefGoogle Scholar
  96. 96.
    Hopp, T., Prickett, K., Price, V., Libby, R., March, C., Cerretti, D., Urdal, D., Conlon, P.: A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6, 1204–1210 (1988)CrossRefGoogle Scholar
  97. 97.
    Gilar, M., Yu, Y.Q., Ahn, J., Xie, H., Han, H., Ying, W., Qian, X.: Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal Biochem 417, 80–8 (2011)PubMedCrossRefGoogle Scholar
  98. 98.
    Boersema, P.J., Mohammed, S., Heck, A.J.: Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal Bioanal Chem 391, 151–9 (2008)PubMedCrossRefGoogle Scholar
  99. 99.
    Zauner, G., Deelder, A.M., Wuhrer, M.: Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32, 3456–66 (2011)PubMedCrossRefGoogle Scholar
  100. 100.
    Mysling, S., Palmisano, G., Hojrup, P., Thaysen-Andersen, M.: Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82, 5598–609 (2010)PubMedCrossRefGoogle Scholar
  101. 101.
    Alley Jr., W.R., Mechref, Y., Novotny, M.V.: Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun Mass Spectrom 23, 495–505 (2009)PubMedCrossRefGoogle Scholar
  102. 102.
    Wells, L., Vosseller, K., Cole, R.N., Cronshaw, J.M., Matunis, M.J., Hart, G.W.: Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1, 791–804 (2002)PubMedCrossRefGoogle Scholar
  103. 103.
    Segu, Z.M., Mechref, Y.: Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun Mass Spectrom 24, 1217–25 (2010)PubMedCrossRefGoogle Scholar
  104. 104.
    Mechref, Y., Novotny, M.V.: Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102, 321–69 (2002)PubMedCrossRefGoogle Scholar
  105. 105.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101, 9528–33 (2004)PubMedCrossRefGoogle Scholar
  106. 106.
    Coon, J.J., Shabanowitz, J., Hunt, D.F., Syka, J.E.: Electron transfer dissociation of peptide anions. J Am Soc Mass Spectrom 16, 880–2 (2005)PubMedCrossRefGoogle Scholar
  107. 107.
    Zubarev, A.R., Kelleher, N.L., McLafferty, F.J.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120, 3265–66 (1998)CrossRefGoogle Scholar
  108. 108.
    Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72, 563–73 (2000)PubMedCrossRefGoogle Scholar
  109. 109.
    Hogan, J.M., Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4, 628–32 (2005)PubMedCrossRefGoogle Scholar
  110. 110.
    Catalina, M.I., Koeleman, C.A., Deelder, A.M., Wuhrer, M.: Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun Mass Spectrom 21, 1053–61 (2007)PubMedCrossRefGoogle Scholar
  111. 111.
    Alley Jr., W.R., Mechref, Y., Novotny, M.V.: Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23, 161–70 (2009)PubMedCrossRefGoogle Scholar
  112. 112.
    Horn, D.M., Ge, Y., McLafferty, F.W.: Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal Chem 72, 4778–84 (2000)PubMedCrossRefGoogle Scholar
  113. 113.
    Swaney, D.L., McAlister, G.C., Wirtala, M., Schwartz, J.C., Syka, J.E., Coon, J.J.: Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79, 477–85 (2007)PubMedCrossRefGoogle Scholar
  114. 114.
    Iavarone, A.T., Williams, E.R.: Mechanism of charging and supercharging molecules in electrospray ionization. J Am Chem Soc 125, 2319–27 (2003)PubMedCrossRefGoogle Scholar
  115. 115.
    Wu, S.L., Huhmer, A.F., Hao, Z., Karger, B.L.: On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6, 4230–44 (2007)PubMedCrossRefGoogle Scholar
  116. 116.
    Scott, N.E., Parker, B.L., Connolly, A.M., Paulech, J., Edwards, A.V., Crossett, B., Falconer, L., Kolarich, D., Djordjevic, S.P., Hojrup, P., Packer, N.H., Larsen, M.R., Cordwell, S.J.: Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10, M000031–MCP201 (2011)PubMedGoogle Scholar
  117. 117.
    Thaysen-Andersen, M., Wilkinson, B.L., Payne, R.J., Packer, N.H.: Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS. Electrophoresis 32, 3536–45 (2011)PubMedCrossRefGoogle Scholar
  118. 118.
    Takahashi, K., Wall, S.B., Suzuki, H., Smith 4th, A.D., Hall, S., Poulsen, K., Kilian, M., Mobley, J.A., Julian, B.A., Mestecky, J., Novak, J., Renfrow, M.B.: Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 9, 2545–57 (2010)PubMedCrossRefGoogle Scholar
  119. 119.
    Wada, Y., Tajiri, M., Ohshima, S.: Quantitation of saccharide compositions of O-glycans by mass spectrometry of glycopeptides and its application to rheumatoid arthritis. J Proteome Res 9, 1367–73 (2010)PubMedCrossRefGoogle Scholar
  120. 120.
    Perdivara, I., Petrovich, R., Allinquant, B., Deterding, L.J., Tomer, K.B., Przybylski, M.: Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 8, 631–42 (2009)PubMedCrossRefGoogle Scholar
  121. 121.
    Tarentino, A.L., Plummer Jr., T.H.: Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 230, 44–57 (1994)PubMedCrossRefGoogle Scholar
  122. 122.
    O'Neill, R.A.: Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J Chromatogr A 720, 201–15 (1996)PubMedCrossRefGoogle Scholar
  123. 123.
    Huang, Y., Mechref, Y., Novotny, M.V.: Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal Chem 73, 6063–9 (2001)PubMedCrossRefGoogle Scholar
  124. 124.
    Huang, Y., Konse, T., Mechref, Y., Novotny, M.V.: Matrix-assisted laser desorption/ionization mass spectrometry compatible beta-elimination of O-linked oligosaccharides. Rapid Commun Mass Spectrom 16, 1199–204 (2002)PubMedCrossRefGoogle Scholar
  125. 125.
    Miura, Y., Kato, K., Takegawa, Y., Kurogochi, M., Furukawa, J., Shinohara, Y., Nagahori, N., Amano, M., Hinou, H., Nishimura, S.: Glycoblotting-assisted O-glycomics: ammonium carbamate allows for highly efficient O-glycan release from glycoproteins. Anal Chem 82, 10021–9 (2010)PubMedCrossRefGoogle Scholar
  126. 126.
    Szabo, Z., Guttman, A., Karger, B.L.: Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem 82, 2588–93 (2010)PubMedCrossRefGoogle Scholar
  127. 127.
    Sandoval, W.N., Arellano, F., Arnott, D., Raab, H., Vandlen, R., Lill, J.R.: Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. Int J Mass Spectrom 259, 117–23 (2007)CrossRefGoogle Scholar
  128. 128.
    Tzeng, Y.K., Chang, C.C., Huang, C.N., Wu, C.C., Han, C.C., Chang, H.C.: Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles. Anal Chem 80, 6809–14 (2008)PubMedCrossRefGoogle Scholar
  129. 129.
    Goetz, J.A., Novotny, M.V., Mechref, Y.: Enzymatic/chemical release of O-glycans allowing MS analysis at high sensitivity. Anal Chem 81, 9546–52 (2009)PubMedCrossRefGoogle Scholar
  130. 130.
    Que, A.H., Mechref, Y., Huang, Y., Taraszka, J.A., Clemmer, D.E., Novotny, M.V.: Coupling capillary electrochromatography with electrospray Fourier transform mass spectrometry for characterizing complex oligosaccharide pools. Anal Chem 75, 1684–90 (2003)PubMedCrossRefGoogle Scholar
  131. 131.
    Que, A.H., Novotny, M.V.: Structural characterization of neutral oligosaccharide mixtures through a combination of capillary electrochromatography and ion trap tandem mass spectrometry. Anal Bioanal Chem 375, 599–608 (2003)PubMedGoogle Scholar
  132. 132.
    Tegeler, T.J., Mechref, Y., Boraas, K., Reilly, J.P., Novotny, M.V.: Microdeposition device interfacing capillary electrochromatography and microcolumn liquid chromatography with matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76, 6698–706 (2004)PubMedCrossRefGoogle Scholar
  133. 133.
    An, H.J., Peavy, T.R., Hedrick, J.L., Lebrilla, C.B.: Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75, 5628–37 (2003)PubMedCrossRefGoogle Scholar
  134. 134.
    Temporini, C., Perani, E., Calleri, E., Dolcini, L., Lubda, D., Caccialanza, G., Massolini, G.: Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal Chem 79, 355–63 (2007)PubMedCrossRefGoogle Scholar
  135. 135.
    Dodds, E.D., Seipert, R.R., Clowers, B.H., German, J.B., Lebrilla, C.B.: Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J Proteome Res 8, 502–12 (2009)PubMedCrossRefGoogle Scholar
  136. 136.
    Alley Jr., W.R., Madera, M., Mechref, Y., Novotny, M.V.: Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem 82, 5095–106 (2010)PubMedCrossRefGoogle Scholar
  137. 137.
    Mechref, Y., Kang, P., Novotny, M.V.: Differentiating structural isomers of sialylated glycans by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 20, 1381–9 (2006)PubMedCrossRefGoogle Scholar
  138. 138.
    Hakomori, S.: A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55, 205–8 (1964)PubMedGoogle Scholar
  139. 139.
    Ciucanu, I., Kerek, F.: A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131, 209–17 (1984)CrossRefGoogle Scholar
  140. 140.
    Ciucanu, I., Costello, C.E.: Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 125, 16213–9 (2003)PubMedCrossRefGoogle Scholar
  141. 141.
    Kang, P., Mechref, Y., Klouckova, I., Novotny, M.V.: Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 19, 3421–8 (2005)PubMedCrossRefGoogle Scholar
  142. 142.
    Kang, P., Mechref, Y., Novotny, M.V.: High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22, 721–34 (2008)PubMedCrossRefGoogle Scholar
  143. 143.
    Robinson, S., Routledge, A., Thomas-Oates, J.: Characterisation and proposed origin of mass spectrometric ions observed 30 Th above the ionised molecules of per-O-methylated carbohydrates. Rapid Commun Mass Spectrom 19, 3681–8 (2005)PubMedCrossRefGoogle Scholar
  144. 144.
    Kyselova, Z., Mechref, Y., Kang, P., Goetz, J.A., Dobrolecki, L.E., Sledge, G.W., Schnaper, L., Hickey, R.J., Malkas, L.H., Novotny, M.V.: Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 54, 1166–75 (2008)PubMedCrossRefGoogle Scholar
  145. 145.
    Alley Jr., W.R., Vasseur, J.A., Goetz, J.A., Svoboda, M., Mann, B.F., Matei, D.E., Menning, N., Hussein, A., Mechref, Y., Novotny, M.V.: N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Proteome Res 11, 2282–300 (2012)PubMedCrossRefGoogle Scholar
  146. 146.
    Vasseur, J.A., Goetz, J.A., Alley, W.R., Novotny, M.V.: Smoking and Lung Cancer-induced Changes in N-Glycosylation of Blood Serum Proteins. Glycobiology Accepted (2012)Google Scholar
  147. 147.
    Kang, P., Madera, M., Alley, W.R., Goldman, R., Mechref, Y., Novotny, M.V.: Glycomic alterations in the highly-abundant and lesser-abundant blood serum protein fractions for patients diagnosed with hepatocellular carcinoma. Int. J. Mass Spectrom. 305, 185–98 (2011)CrossRefGoogle Scholar
  148. 148.
    Goldman, R., Ressom, H.W., Varghese, R.S., Goldman, L., Bascug, G., Loffredo, C.A., Abdel-Hamid, M., Gouda, I., Ezzat, S., Kyselova, Z., Mechref, Y., Novotny, M.V.: Detection of hepatocellular carcinoma using glycomic analysis. Clin Cancer Res 15, 1808–13 (2009)PubMedCrossRefGoogle Scholar
  149. 149.
    Kyselova, Z., Mechref, Y., Al Bataineh, M.M., Dobrolecki, L.E., Hickey, R.J., Vinson, J., Sweeney, C.J., Novotny, M.V.: Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res 6, 1822–32 (2007)PubMedCrossRefGoogle Scholar
  150. 150.
    Mechref, Y., Hussein, A., Bekesova, S., Pungpapong, V., Zhang, M., Dobrolecki, L.E., Hickey, R.J., Hammoud, Z.T., Novotny, M.V.: Quantitative serum glycomics of esophageal adenocarcinoma and other esophageal disease onsets. J Proteome Res 8, 2656–66 (2009)PubMedCrossRefGoogle Scholar
  151. 151.
    McConville, M.J., Thomas-Oates, J.E., Ferguson, M.A., Homans, S.W.: Structure of the lipophosphoglycan from Leishmania major. J Biol Chem 265, 19611–23 (1990)PubMedGoogle Scholar
  152. 152.
    Yu, S.Y., Wu, S.W., Hsiao, H.H., Khoo, K.H.: Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology 19, 1136–49 (2009)PubMedCrossRefGoogle Scholar
  153. 153.
    Lei, M., Mechref, Y., Novotny, M.V.: Structural analysis of sulfated glycans by sequential double-permethylation using methyl iodide and deuteromethyl iodide. J Am Soc Mass Spectrom 20, 1660–71 (2009)PubMedCrossRefGoogle Scholar
  154. 154.
    Lei, M., Novotny, M.V., Mechref, Y.: Sequential enrichment of sulfated glycans by strong anion-exchange chromatography prior to mass spectrometric measurements. J Am Soc Mass Spectrom 21, 348–57 (2010)PubMedCrossRefGoogle Scholar
  155. 155.
    Kang, P., Mechref, Y., Kyselova, Z., Goetz, J.A., Novotny, M.V.: Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal Chem 79, 6064–73 (2007)PubMedCrossRefGoogle Scholar
  156. 156.
    Alvarez-Manilla, G., Warren, N.L., Abney, T., Atwood 3rd, J., Azadi, P., York, W.S., Pierce, M., Orlando, R.: Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17, 677–87 (2007)PubMedCrossRefGoogle Scholar
  157. 157.
    Atwood 3rd, J.A., Cheng, L., Alvarez-Manilla, G., Warren, N.L., York, W.S., Orlando, R.: Quantitation by isobaric labeling: applications to glycomics. J Proteome Res 7, 367–74 (2008)PubMedCrossRefGoogle Scholar
  158. 158.
    Lawrence, R., Olson, S.K., Steele, R.E., Wang, L., Warrior, R., Cummings, R.D., Esko, J.D.: Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J Biol Chem 283, 33674–84 (2008)PubMedCrossRefGoogle Scholar
  159. 159.
    Ridlova, G., Mortimer, J.C., Maslen, S.L., Dupree, P., Stephens, E.: Oligosaccharide relative quantitation using isotope tagging and normal-phase liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 22, 2723–30 (2008)PubMedCrossRefGoogle Scholar
  160. 160.
    Xia, B., Feasley, C.L., Sachdev, G.P., Smith, D.F., Cummings, R.D.: Glycan reductive isotope labeling for quantitative glycomics. Anal Biochem 387, 162–70 (2009)PubMedCrossRefGoogle Scholar
  161. 161.
    Hashii, N., Kawasaki, N., Itoh, S., Nakajima, Y., Kawanishi, T., Yamaguchi, T.: Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: relative quantification of N-glycans using an isotope-tagging method. Immunology 126, 336–45 (2009)PubMedCrossRefGoogle Scholar
  162. 162.
    Prien, J.M., Prater, B.D., Qin, Q., Cockrill, S.L.: Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal Chem 82, 1498–508 (2010)PubMedCrossRefGoogle Scholar
  163. 163.
    Zhang, P., Zhang, Y., Xue, X., Wang, C., Wang, Z., Huang, L.: Relative quantitation of glycans using stable isotopic labels 1-(d0/d5) phenyl-3-methyl-5-pyrazolone by mass spectrometry. Anal Biochem 418, 1–9 (2011)PubMedCrossRefGoogle Scholar
  164. 164.
    Walker, S.H., Budhathoki-Uprety, J., Novak, B.M., Muddiman, D.C.: Stable-isotope labeled hydrophobic hydrazide reagents for the relative quantification of N-linked glycans by electrospray ionization mass spectrometry. Anal Chem 83, 6738–45 (2011)PubMedCrossRefGoogle Scholar
  165. 165.
    Walker, S.H., Papas, B.N., Comins, D.L., Muddiman, D.C.: Interplay of permanent charge and hydrophobicity in the electrospray ionization of glycans. Anal Chem 82, 6636–42 (2010)PubMedCrossRefGoogle Scholar
  166. 166.
    Walker, S.H., Lilley, L.M., Enamorado, M.F., Comins, D.L., Muddiman, D.C.: Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 22, 1309–17 (2011)PubMedCrossRefGoogle Scholar
  167. 167.
    Bowman, M.J., Zaia, J.: Tags for the stable isotopic labeling of carbohydrates and quantitative analysis by mass spectrometry. Anal Chem 79, 5777–84 (2007)PubMedCrossRefGoogle Scholar
  168. 168.
    Bowman, M.J., Zaia, J.: Comparative glycomics using a tetraplex stable-isotope coded tag. Anal Chem 82, 3023–31 (2010)PubMedCrossRefGoogle Scholar
  169. 169.
    Orlando, R., Lim, J.M., Atwood 3rd, J.A., Angel, P.M., Fang, M., Aoki, K., Alvarez-Manilla, G., Moremen, K.W., York, W.S., Tiemeyer, M., Pierce, M., Dalton, S., Wells, L.: IDAWG: metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J Proteome Res 8, 3816–23 (2009)PubMedCrossRefGoogle Scholar
  170. 170.
    Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., Dwek, R.A.: Glycosylation and the immune system. Science 291, 2370–6 (2001)PubMedCrossRefGoogle Scholar
  171. 171.
    Marth, J.D., Grewal, P.K.: Mammalian glycosylation in immunity. Nat Rev Immunol 8, 874–87 (2008)PubMedCrossRefGoogle Scholar
  172. 172.
    Ashline, D.J., Lapadula, A.J., Liu, Y.H., Lin, M., Grace, M., Pramanik, B., Reinhold, V.N.: Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 79, 3830–42 (2007)PubMedCrossRefGoogle Scholar
  173. 173.
    Prien, J.M., Huysentruyt, L.C., Ashline, D.J., Lapadula, A.J., Seyfried, T.N., Reinhold, V.N.: Differentiating N-linked glycan structural isomers in metastatic and nonmetastatic tumor cells using sequential mass spectrometry. Glycobiology 18, 353–66 (2008)PubMedCrossRefGoogle Scholar
  174. 174.
    Jiao, J., Zhang, H., Reinhold, V.N.: High performance IT-MS sequencing of glycans (Spatial resolution of ovalbumin isomers). Int J Mass Spectrom 303, 109–117 (2011)PubMedCrossRefGoogle Scholar
  175. 175.
    Baker, A.G., Alexander, A., Novotny, M.V.: Narrow-band collisional activation technique for ion trap mass spectrometers. Anal Chem 71, 2945–50 (1999)PubMedCrossRefGoogle Scholar
  176. 176.
    Mechref, Y., Novotny, M.V., Krishnan, C.: Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal Chem 75, 4895–903 (2003)PubMedCrossRefGoogle Scholar
  177. 177.
    Alley Jr., W.R., Novotny, M.V.: Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins. J Proteome Res 9, 3062–72 (2010)PubMedCrossRefGoogle Scholar
  178. 178.
    Wheeler, S.F., Domann, P., Harvey, D.J.: Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 – > 3)- and alpha(2 – > 6)-isomers. Rapid Commun Mass Spectrom 23, 303–12 (2009)PubMedCrossRefGoogle Scholar
  179. 179.
    Sekiya, S., Wada, Y., Tanaka, K.: Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem 77, 4962–8 (2005)PubMedCrossRefGoogle Scholar
  180. 180.
    Saldova, R., Royle, L., Radcliffe, C.M., Abd Hamid, U.M., Evans, R., Arnold, J.N., Banks, R.E., Hutson, R., Harvey, D.J., Antrobus, R., Petrescu, S.M., Dwek, R.A., Rudd, P.M.: Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 17, 1344–56 (2007)PubMedCrossRefGoogle Scholar
  181. 181.
    Abd Hamid, U.M., Royle, L., Saldova, R., Radcliffe, C.M., Harvey, D.J., Storr, S.J., Pardo, M., Antrobus, R., Chapman, C.J., Zitzmann, N., Robertson, J.F., Dwek, R.A., Rudd, P.M.: A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18, 1105–18 (2008)PubMedCrossRefGoogle Scholar
  182. 182.
    Arnold, J.N., Saldova, R., Galligan, M.C., Murphy, T.B., Mimura-Kimura, Y., Telford, J.E., Godwin, A.K., Rudd, P.M.: Novel glycan biomarkers for the detection of lung cancer. J Proteome Res 10, 1755–64 (2011)PubMedCrossRefGoogle Scholar
  183. 183.
    Saldova, R., Fan, Y., Fitzpatrick, J.M., Watson, R.W., Rudd, P.M.: Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 21, 195–205 (2011)PubMedCrossRefGoogle Scholar
  184. 184.
    Isailovic, D., Kurulugama, R.T., Plasencia, M.D., Stokes, S.T., Kyselova, Z., Goldman, R., Mechref, Y., Novotny, M.V., Clemmer, D.E.: Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J Proteome Res 7, 1109–17 (2008)PubMedCrossRefGoogle Scholar
  185. 185.
    Plasencia, M.D., Isailovic, D., Merenbloom, S.I., Mechref, Y., Novotny, M.V., Clemmer, D.E.: Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J Am Soc Mass Spectrom 19, 1706–15 (2008)PubMedCrossRefGoogle Scholar
  186. 186.
    Zhu, M., Bendiak, B., Clowers, B., Hill Jr., H.H.: Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal Bioanal Chem 394, 1853–67 (2009)PubMedCrossRefGoogle Scholar
  187. 187.
    Stefansson, M., Novotny, M.: Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format. Anal Chem 66, 1134–40 (1994)PubMedCrossRefGoogle Scholar
  188. 188.
    Stefansson, M., Novotny, M.: Resolution of the branched forms of oligosaccharides by high-performance capillary electrophoresis. Carbohydr Res 258, 1–9 (1994)PubMedCrossRefGoogle Scholar
  189. 189.
    Alpert, A.J.: Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499, 177–96 (1990)PubMedCrossRefGoogle Scholar
  190. 190.
    Ahn, J., Bones, J., Yu, Y.Q., Rudd, P.M., Gilar, M.: Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 878, 403–8 (2010)PubMedCrossRefGoogle Scholar
  191. 191.
    Takegawa, Y., Deguchi, K., Keira, T., Ito, H., Nakagawa, H., Nishimura, S.: Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A 1113, 177–81 (2006)PubMedCrossRefGoogle Scholar
  192. 192.
    Costello, C.E., Contado-Miller, J.M., Cipollo, J.F.: A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 18, 1799–812 (2007)PubMedCrossRefGoogle Scholar
  193. 193.
    Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal Chem 79, 5051–7 (2007)PubMedCrossRefGoogle Scholar
  194. 194.
    Pabst, M., Grass, J., Toegel, S., Liebminger, E., Strasser, R., Altmann, F.: Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology 22, 389–99 (2012)PubMedCrossRefGoogle Scholar
  195. 195.
    Pabst, M., Altmann, F.: Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80, 7534–42 (2008)PubMedCrossRefGoogle Scholar
  196. 196.
    Yin, H., Killeen, K., Brennen, R., Sobek, D., Werlich, M., van de Goor, T.: Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem 77, 527–33 (2005)PubMedCrossRefGoogle Scholar
  197. 197.
    Yin, H., Killeen, K.: The fundamental aspects and applications of Agilent HPLC-Chip. J Sep Sci 30, 1427–34 (2007)PubMedCrossRefGoogle Scholar
  198. 198.
    Wu, S., Tao, N., German, J.B., Grimm, R., Lebrilla, C.B.: Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res 9, 4138–51 (2010)PubMedCrossRefGoogle Scholar
  199. 199.
    Wu, S., Grimm, R., German, J.B., Lebrilla, C.B.: Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res 10, 856–68 (2011)PubMedCrossRefGoogle Scholar
  200. 200.
    Dallas, D.C., Martin, W.F., Strum, J.S., Zivkovic, A.M., Smilowitz, J.T., Underwood, M.A., Affolter, M., Lebrilla, C.B., German, J.B.: N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J Agric Food Chem 59, 4255–63 (2011)PubMedCrossRefGoogle Scholar
  201. 201.
    Chu, C.S., Ninonuevo, M.R., Clowers, B.H., Perkins, P.D., An, H.J., Yin, H., Killeen, K., Miyamoto, S., Grimm, R., Lebrilla, C.B.: Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9, 1939–51 (2009)PubMedCrossRefGoogle Scholar
  202. 202.
    Hua, S., An, H.J., Ozcan, S., Ro, G.S., Soares, S., DeVere-White, R., Lebrilla, C.B.: Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136, 3663–71 (2011)PubMedCrossRefGoogle Scholar
  203. 203.
    Bynum, M.A., Yin, H., Felts, K., Lee, Y.M., Monell, C.R., Killeen, K.: Characterization of IgG N-glycans employing a microfluidic chip that integrates glycan cleavage, sample purification, LC separation, and MS detection. Anal Chem 81, 8818–25 (2009)PubMedCrossRefGoogle Scholar
  204. 204.
    Liu, J., Dolnik, V., Hsieh, Y.Z., Novotny, M.: Experimental evaluation of the separation efficiency in capillary electrophoresis using open tubular and gel-filled columns. Anal Chem 64, 1328–36 (1992)PubMedCrossRefGoogle Scholar
  205. 205.
    Guttman, A.: High-resolution carbohydrate profiling by capillary gel electrophoresis. Nature 380, 461–2 (1996)PubMedCrossRefGoogle Scholar
  206. 206.
    Oyama, T., Yodohsi, M., Yamane, A., Kakehi, K., Hayakawa, T., Suzuki, S.: Rapid and sensitive analyses of glycoprotein-derived oligosaccharides by liquid chromatography and laser-induced fluorometric detection capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 879, 2928–34 (2011)PubMedCrossRefGoogle Scholar
  207. 207.
    Ijiri, S., Todoroki, K., Yoshida, H., Yoshitake, T., Nohta, H., Yamaguchi, M.: Highly sensitive capillary electrophoresis analysis of N-linked oligosaccharides in glycoproteins following fluorescence derivatization with rhodamine 110 and laser-induced fluorescence detection. Electrophoresis 32, 3499–509 (2011)PubMedCrossRefGoogle Scholar
  208. 208.
    Schwarzer, J., Rapp, E., Reichl, U.: N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis 29, 4203–14 (2008)PubMedCrossRefGoogle Scholar
  209. 209.
    Szabo, Z., Guttman, A., Bones, J., Karger, B.L.: Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis. Anal Chem 83, 5329–36 (2011)PubMedCrossRefGoogle Scholar
  210. 210.
    Vanderschaeghe, D., Laroy, W., Sablon, E., Halfon, P., Van Hecke, A., Delanghe, J., Callewaert, N.: GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Mol Cell Proteomics 8, 986–94 (2009)PubMedCrossRefGoogle Scholar
  211. 211.
    Vanderschaeghe, D., Szekrenyes, A., Wenz, C., Gassmann, M., Naik, N., Bynum, M., Yin, H., Delanghe, J., Guttman, A., Callewaert, N.: High-throughput profiling of the serum N-glycome on capillary electrophoresis microfluidics systems: toward clinical implementation of GlycoHepatoTest. Anal Chem 82, 7408–15 (2010)PubMedCrossRefGoogle Scholar
  212. 212.
    Zamfir, A.D., Lion, N., Vukelic, Z., Bindila, L., Rossier, J., Girault, H.H., Peter-Katalinic, J.: Thin chip microsprayer system coupled to quadrupole time-of-flight mass spectrometer for glycoconjugate analysis. Lab Chip 5, 298–307 (2005)PubMedCrossRefGoogle Scholar
  213. 213.
    Zhuang, Z., Starkey, J.A., Mechref, Y., Novotny, M.V., Jacobson, S.C.: Electrophoretic analysis of N-glycans on microfluidic devices. Anal Chem 79, 7170–5 (2007)PubMedCrossRefGoogle Scholar
  214. 214.
    Smejkal, P., Szekrenyes, A., Ryvolova, M., Foret, F., Guttman, A., Bek, F., Macka, M.: Chip-based CE for rapid separation of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) derivatized glycans. Electrophoresis 31, 3783–6 (2010)PubMedCrossRefGoogle Scholar
  215. 215.
    Primack, J., Flynn, G.C., Pan, H.: A high-throughput microchip-based glycan screening assay for antibody cell culture samples. Electrophoresis 32, 1129–32 (2011)PubMedCrossRefGoogle Scholar
  216. 216.
    Cortes, D.F., Kabulski, J.L., Lazar, A.C., Lazar, I.M.: Recent advances in the MS analysis of glycoproteins: Capillary and microfluidic workflows. Electrophoresis 32, 14–29 (2011)PubMedCrossRefGoogle Scholar
  217. 217.
    Zhuang, Z., Mitra, I., Hussein, A., Novotny, M.V., Mechref, Y., Jacobson, S.C.: Microchip electrophoresis of N-glycans on serpentine separation channels with asymmetrically tapered turns. Electrophoresis 32, 246–53 (2011)PubMedCrossRefGoogle Scholar
  218. 218.
    Que, A.H., Novotny, M.V.: Separation of neutral saccharide mixtures with capillary electrochromatography using hydrophilic monolithic columns. Anal Chem 74, 5184–91 (2002)PubMedCrossRefGoogle Scholar
  219. 219.
    Gennaro, L.A., Salas-Solano, O.: On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 80, 3838–45 (2008)PubMedCrossRefGoogle Scholar
  220. 220.
    Mechref, Y., Muzikar, J., Novotny, M.V.: Comprehensive assessment of N-glycans derived from a murine monoclonal antibody: a case for multimethodological approach. Electrophoresis 26, 2034–46 (2005)PubMedCrossRefGoogle Scholar
  221. 221.
    Guttman, A.: Multistructure sequencing of N-linked fetuin glycans by capillary gel electrophoresis and enzyme matrix digestion. Electrophoresis 18, 1136–41 (1997)PubMedCrossRefGoogle Scholar
  222. 222.
    Ma, S., Nashabeh, W.: Carbohydrate analysis of a chimeric recombinant monoclonal antibody by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 71, 5185–92 (1999)PubMedCrossRefGoogle Scholar
  223. 223.
    Archer-Hartmann, S.A., Crihfield, C.L., Holland, L.A.: Online enzymatic sequencing of glycans from Trastuzumab by phospholipid-assisted capillary electrophoresis. Electrophoresis 32, 3491–8 (2011)PubMedCrossRefGoogle Scholar
  224. 224.
    Archer-Hartmann, S.A., Sargent, L.M., Lowry, D.T., Holland, L.A.: Microscale exoglycosidase processing and lectin capture of glycans with phospholipid assisted capillary electrophoresis separations. Anal Chem 83, 2740–7 (2011)PubMedCrossRefGoogle Scholar
  225. 225.
    Amon, S., Zamfir, A.D., Rizzi, A.: Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29, 2485–507 (2008)PubMedCrossRefGoogle Scholar
  226. 226.
    Mechref, Y., Novotny, M.V.: Glycomic analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom Rev 28, 207–22 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Milos V. Novotny
    • 1
    • 2
    • 3
  • William R. AlleyJr.
    • 1
    • 2
  • Benjamin F. Mann
    • 1
    • 2
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.National Center for Glycomics and GlycoproteomicsIndiana UniversityBloomingtonUSA
  3. 3.Indiana University School of MedicineIndiana UniversityIndianapolisUSA

Personalised recommendations