Advertisement

Glycoconjugate Journal

, Volume 29, Issue 5–6, pp 365–377 | Cite as

Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling

  • Jianping Fang
  • Ying Wang
  • Xiaofen Lv
  • Xiaokun Shen
  • Xinyan Ni
  • Kan DingEmail author
Article

Abstract

A soluble homogeneous β-glucan, GFPBW1, with a molecular mass of 300 kDa was purified from the fraction of the fruit bodies of Grifola frondosa extracted with 5 % NaOH. Using various methods, such as infrared spectroscopy, NMR, methylation and monosaccharide composition analysis, its structure was determined to be a β-D-(1-3)-linked glucan backbone with a single β-D-(1-6)-linked glucopyranosyl residue branched at C-6 on every third residue. It induced TNF-α and IL-6 production and the activation of Syk and NF-κB signaling in resident peritoneal macrophages from ICR mice, which could be significantly inhibited by the blocking reagent laminarin. A competitive phagocytosis assay with FITC-zymosan indicated that GFPBW1 could bind to DC-associated C-type lectin 1 (Dectin-1). The TNF-α secretion and activation of Syk/NF-κB signaling triggered by GFPBW1 were enhanced in RAW264.7 cells overexpressing wild but not mutant (Δ38 and Y15S) Dectin-1. Furthermore, GFPBW1 potentiated the Concanavalin A-induced proliferative response of splenocytes and inhibited Sarcoma-180 growth allografted in ICR mice but not in immunodeficient BALB/c nu/nu mice. These results suggested that the antitumor activity of GFPBW1 was partially associated with the activation of macrophages via the Dectin-1/Syk/NF-κB signaling pathway. This molecule could be a promising biological response modifier with clear application for antitumor therapies.

Keywords

β-glucan Grifola frondosa Biological response modifier Dectin-1 

Abbreviations

BRMs

Biological response modifiers

CARD9

Caspase recruitment domain 9

ConA

Concanavalin A

CR3

Complement receptor 3

CTX

Cyclophosphamide

DCs

Dendritic cells

Dectin-1

DC-associated C-type lectin 1

DMSO

Dimethyl sulfoxide

FACS

Fluorescence-activated cell sorting

GC

Gas chromatography

G. frondosa

Grifola frondosa (Fr.) S. F. Gray

GRN

Grifolan

HPGPC

High performance gel permeation chromatography

HRP

Horseradish peroxidase

HSQC

Heteronuclear single quantum coherence

IR

Infrared

ITAM

Immunoreceptor tyrosine-based activation motif

LPS

Lipopolysaccharide

MS

Mass spectrometry

NF-κB

Nuclear factor κB

NMR

Nuclear magnetic resonance

PCR

Polymerase chain reaction

PMB

Polymyxin B

POD

Peroxidase

PRRs

Pattern recognition receptors

Syk

Spleen tyrosine kinase

TFA

Trifluoroacetic acid

TLR2

Toll like receptor 2

SDS

Sodium dodecyl sulfate

Notes

Acknowledgements

This work was supported by New Drug Creation and Manufacturing Program (2012ZX09301001-003), National Science Fund for Distinguished Young Scholars (81125025) and the funds for Industry-University-Research Institution Alliance in Guangdong Province, China (2010A090200041).

References

  1. 1.
    Novak, M., Vetvicka, V.: Glucans as biological response modifiers. Endocr. Metab. Immune Disord. Drug Targets 9, 67–75 (2009)PubMedCrossRefGoogle Scholar
  2. 2.
    Borchers, A.T., Keen, C.L., Gershwin, M.E.: Mushrooms, tumors, and immunity: an update. Exp. Biol. Med. (Maywood) 229, 393–406 (2004)Google Scholar
  3. 3.
    Mayell, M.: Maitake extracts and their therapeutic potential. Altern. Med. Rev. 6, 48–60 (2001)PubMedGoogle Scholar
  4. 4.
    Wasser, S.P.: Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60, 258–274 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Ohno, N., Suzuki, I., Oikawa, S., Sato, K., Miyazaki, T., Yadomae, T.: Antitumor activity and structural characterization of glucans extracted from cultured fruit bodies of Grifola frondosa. Chem Pharm Bull (Tokyo) 32, 1142–1151 (1984)CrossRefGoogle Scholar
  6. 6.
    Ohno, N., Iino, K., Takeyama, T., Suzuki, I., Sato, K., Oikawa, S., Miyazaki, T., Yadomae, T.: Structural characterization and antitumor activity of the extracts from matted mycelium of cultured Grifola frondosa. Chem. Pharm. Bull. (Tokyo) 33, 3395–3401 (1985)CrossRefGoogle Scholar
  7. 7.
    Ohno, N., Adachi, Y., Suzuki, I., Sato, K., Oikawa, S., Yadomae, T.: Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa. Chem. Pharm. Bull. (Tokyo) 34, 1709–1715 (1986)CrossRefGoogle Scholar
  8. 8.
    Tada, R., Adachi, Y., Ishibashi, K., Ohno, N.: An unambiguous structural elucidation of a 1,3-beta-D-glucan obtained from liquid-cultured Grifola frondosa by solution NMR experiments. Carbohydr. Res. 344, 400–404 (2009)PubMedCrossRefGoogle Scholar
  9. 9.
    Hashimoto, T., Ohno, N., Adachi, Y., Yadomae, T.: Nitric oxide synthesis in murine peritoneal macrophages by fungal beta-glucans. Biol. Pharm. Bull. 20, 1006–1009 (1997)PubMedCrossRefGoogle Scholar
  10. 10.
    Masuda, Y., Togo, T., Mizuno, S., Konishi, M., Nanba, H.: Soluble beta-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway. J. Leukoc. Biol. (2011). doi: 10.1189/jlb.0711386
  11. 11.
    Nanba, H., Hamaguchi, A., Kuroda, H.: The chemical structure of an antitumor polysaccharide in fruit bodies of Grifola frondosa (maitake). Chem. Pharm. Bull. (Tokyo) 35, 1162–1168 (1987)CrossRefGoogle Scholar
  12. 12.
    Kodama, N., Asakawa, A., Inui, A., Masuda, Y., Nanba, H.: Enhancement of cytotoxicity of NK cells by D-Fraction, a polysaccharide from Grifola frondosa. Oncol. Rep. 13, 497–502 (2005)PubMedGoogle Scholar
  13. 13.
    Deng, G., Lin, H., Seidman, A., Fornier, M., D’Andrea, G., Wesa, K., Yeung, S., Cunningham-Rundles, S., Vickers, A.J., Cassileth, B.: A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J. Cancer Res. Clin. Oncol. 135, 1215–1221 (2009)PubMedCrossRefGoogle Scholar
  14. 14.
    Brown, G.D., Gordon, S.: Fungal beta-glucans and mammalian immunity. Immunity 19, 311–315 (2003)PubMedCrossRefGoogle Scholar
  15. 15.
    Goodridge, H.S., Wolf, A.J., Underhill, D.M.: Beta-glucan recognition by the innate immune system. Immunol. Rev. 230, 38–50 (2009)PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, J., Seviour, R.: Medicinal importance of fungal beta-(1– > 3), (1– > 6)-glucans. Mycol. Res. 111, 635–652 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor, P.R., Tsoni, S.V., Willment, J.A., Dennehy, K.M., Rosas, M., Findon, H., Haynes, K., Steele, C., Botto, M., Gordon, S., Brown, G.D.: Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    Rogers, N.C., Slack, E.C., Edwards, A.D., Nolte, M.A., Schulz, O., Schweighoffer, E., Williams, D.L., Gordon, S., Tybulewicz, V.L., Brown, G.D., Reis e Sousa, C.: Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., Underhill, D.M.: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    Drummond, R.A., Brown, G.D.: The role of Dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 14, 392–399 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    Gross, O., Gewies, A., Finger, K., Schafer, M., Sparwasser, T., Peschel, C., Forster, I., Ruland, J.: Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    Masuda, Y., Ito, K., Konishi, M., Nanba, H.: A polysaccharide extracted from Grifola frondosa enhances the anti-tumor activity of bone marrow-derived dendritic cell-based immunotherapy against murine colon cancer. Cancer Immunol. Immunother. 59, 1531–1541 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    Dong, Q., Jia, L.M., Fang, J.N.: A beta-D-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation. Carbohydr. Res. 341, 791–795 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Needs, P.W., Selvendran, R.R.: Avoiding Oxidative-Degradation during Sodium-Hydroxide Methyl Iodide-Mediated Carbohydrate Methylation in Dimethyl-Sulfoxide. Carbohyd. Res. 245, 1–10 (1993)CrossRefGoogle Scholar
  25. 25.
    Kutner, R.H., Zhang, X.Y., Reiser, J.: Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 495–505 (2009)PubMedCrossRefGoogle Scholar
  26. 26.
    Goodridge, H.S., Shimada, T., Wolf, A.J., Hsu, Y.M., Becker, C.A., Lin, X., Underhill, D.M.: Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J. Immunol. 182, 1146–1154 (2009)PubMedGoogle Scholar
  27. 27.
    Wu, X.M., Tu, P.F.: Isolation and characterization of alpha-(1– > 6)-glucans from Cistanche deserticola. J. Asian Nat. Prod. Res. 7, 823–828 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    Yashoda, H.M., Prabha, T.N., Tharanathan, R.N.: Mango ripening–chemical and structural characterization of pectic and hemicellulosic polysaccharides. Carbohydr. Res. 340, 1335–1342 (2005)PubMedCrossRefGoogle Scholar
  29. 29.
    Bao, X.F., Fang, J.N.: Structural characterization and chemical modification of a glucan from spores of Ganoderma lucidum. Chinese Chem. Lett. 12, 967–970 (2001)Google Scholar
  30. 30.
    Tada, R., Harada, T., Nagi-Miura, N., Adachi, Y., Nakajima, M., Yadomae, T., Ohno, N.: NMR characterization of the structure of a beta-(1– > 3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohydr. Res. 342, 2611–2618 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    Mosser, D.M., Edwards, J.P.: Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008)PubMedCrossRefGoogle Scholar
  32. 32.
    Adams, E.L., Rice, P.J., Graves, B., Ensley, H.E., Yu, H., Brown, G.D., Gordon, S., Monteiro, M.A., Papp-Szabo, E., Lowman, D.W., Power, T.D., Wempe, M.F., Williams, D.L.: Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther. 325, 115–123 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    Brown, G.D., Taylor, P.R., Reid, D.M., Willment, J.A., Williams, D.L., Martinez-Pomares, L., Wong, S.Y., Gordon, S.: Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002)PubMedCrossRefGoogle Scholar
  34. 34.
    Vallabhapurapu, S., Karin, M.: Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009)PubMedCrossRefGoogle Scholar
  35. 35.
    Adachi, Y., Ishii, T., Ikeda, Y., Hoshino, A., Tamura, H., Aketagawa, J., Tanaka, S., Ohno, N.: Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect. Immun. 72, 4159–4171 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    Herre, J., Marshall, A.S., Caron, E., Edwards, A.D., Williams, D.L., Schweighoffer, E., Tybulewicz, V., Reis e Sousa, C., Gordon, S., Brown, G.D.: Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104, 4038–4045 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    Kidd, P.M.: The use of mushroom glucans and proteoglycans in cancer treatment. Altern. Med. Rev. 5, 4–27 (2000)PubMedGoogle Scholar
  38. 38.
    Volman, J.J., Ramakers, J.D., Plat, J.: Dietary modulation of immune function by beta-glucans. Physiol. Behav. 94, 276–284 (2008)PubMedCrossRefGoogle Scholar
  39. 39.
    Saijo, S., Fujikado, N., Furuta, T., Chung, S.H., Kotaki, H., Seki, K., Sudo, K., Akira, S., Adachi, Y., Ohno, N., Kinjo, T., Nakamura, K., Kawakami, K., Iwakura, Y.: Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8, 39–46 (2007)PubMedCrossRefGoogle Scholar
  40. 40.
    Guo, L., Xie, J., Ruan, Y., Zhou, L., Zhu, H., Yun, X., Jiang, Y., Lu, L., Chen, K., Min, Z., Wen, Y., Gu, J.: Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int. Immunopharmacol. 9, 1175–1182 (2009)PubMedCrossRefGoogle Scholar
  41. 41.
    Okazaki, M., Adachi, Y., Ohno, N., Yadomae, T.: Structure-activity relationship of (1– > 3)-beta-D-glucans in the induction of cytokine production from macrophages, in vitro. Biol. Pharm. Bull. 18, 1320–1327 (1995)PubMedCrossRefGoogle Scholar
  42. 42.
    Takeyama, T., Suzuki, I., Ohno, N., Oikawa, S., Sato, K., Ohsawa, M., Yadomae, T.: Host-mediated antitumor effect of grifolan NMF-5 N, a polysaccharide obtained from Grifola frondosa. J. Pharmacobiodyn. 10, 644–651 (1987)PubMedCrossRefGoogle Scholar
  43. 43.
    Ikeda, Y., Adachi, Y., Ishii, T., Tamura, H., Aketagawa, J., Tanaka, S., Ohno, N.: Blocking effect of anti-Dectin-1 antibodies on the anti-tumor activity of 1,3-beta-glucan and the binding of Dectin-1 to 1,3-beta-glucan. Biol. Pharm. Bull. 30, 1384–1389 (2007)PubMedCrossRefGoogle Scholar
  44. 44.
    Chan, G.C., Chan, W.K., Sze, D.M.: The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2, 25 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    Liu, J., Gunn, L., Hansen, R., Yan, J.: Combined yeast-derived beta-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exp. Mol. Pathol. 86, 208–214 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jianping Fang
    • 1
  • Ying Wang
    • 1
  • Xiaofen Lv
    • 1
  • Xiaokun Shen
    • 1
  • Xinyan Ni
    • 1
  • Kan Ding
    • 1
    Email author
  1. 1.Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina

Personalised recommendations