Glycoconjugate Journal

, Volume 29, Issue 7, pp 457–465 | Cite as

Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades

  • Michiko Shimokawa
  • Ayako Fukudome
  • Ryoko Yamashita
  • Yuji Minami
  • Fumio YagiEmail author
  • Hiroaki Tateno
  • Jun Hirabayashi


A new mannose-recognizing lectin (MOL) was purified on an asialofetuin-column from fruiting bodies of Marasmius oreades grown in Japan. The lectin (MOA) from the fruiting bodies of the same fungi is well known to be a ribosome-inactivating type lectin that recognizes blood-group B sugar. However, in our preliminary investigation, MOA was not found in Japanese fruiting bodies of M. oreades, and instead, MOL was isolated. Gel filtration showed MOL is a homodimer noncovalently associated with two subunits of 13 kDa. The N-terminal sequence of MOL was blocked. The sequence of MOL was determined by cloning from cDNA and by protein sequencing of enzyme-digested peptides. The sequence shows mannose-binding motifs of bulb-type mannose-binding lectins from plants, and similarity to the sequences. Analyses of sugar-binding specificity by hemagglutination inhibition revealed the preference of MOL toward mannose and thyroglobulin, but asialofetuin was the strongest inhibitor of glycoproteins tested. Furthermore, glycan-array analysis showed that the specificity pattern of MOL was different from those of typical mannose-specific lectins. MOL preferred complex–type N-glycans rather than high-mannose N-glycans.


Fungus GNA-like Lectin Mannose-binding Marasmius oreades 



Galanthus nivalis agglutinin


Lyophyllum descades lectin


Marasmius oreades agglutinin


Marasmius oreades lectin


Remusatia vivipara lectin


Tulipa hybrid lectin 1 with complex specificity


  1. 1.
    Sharon, N., Lis, H.: Lectins as cell recognition molecules. Science 246, 227–246 (1989)PubMedCrossRefGoogle Scholar
  2. 2.
    Singh, R.S., Bhari, R., Kaur, H.P.: Mushroom lectins: Current status and future perspectives. Crit. Rev. Biotechnol. 30, 99–126 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    Goldstein, I.J., Winter, H.C.: Mushroom Lectins. In: Kamerling, J.P. (ed.) Comprehensive glycoscience, vol. 3, pp. 601–621. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  4. 4.
    Goldstein, I.J., Winter, H.C., Aurandt, J., Confer, L., Adamson, J.T., Hakansson, K., Remmer, H.: A new α-galactosyl-binding protein from the mushroom Lyophyllum descastes. Arch. Biochem. Biophys. 467, 268–274 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Fouquaert, E., Hanton, S.L., Balzarini, F., Peumans, W.J., Van Damme, E.J.M.: Localization and topogenesis studies of cytoplasmic and vacuolar homologs of the Galanthus nivalis agglutinin. Plant Cell Physiol. 48, 1010–1021 (2007)PubMedCrossRefGoogle Scholar
  6. 6.
    Liu, Q., Wang, H., Ng, T.B.: First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim. Biophys. Acta 1760, 1914–1919 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    Kruger, R.P., Winter, H.C., Simonson-Leff, N., Stuckey, J.A., Goldstein, I.J., Dixon, J.E.: Cloning, expression, and characterization of the Galα1,3Gal high affinity lectin from the mushroom Marasmius oreades. J. Biol. Chem. 277, 15002–150005 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    Yagi, F., Sakai, T., Shiraishi, N., Yotsumoto, M., Mukoyoshi, R.: Hemagglutinins (lectins) in fruit bodies of Japanese higher fungi. Mycoscience 41, 323–330 (2000)CrossRefGoogle Scholar
  9. 9.
    Schagger, H., Jagow, G.V.: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the range from 1 to 100 kDa. Anal. Biochem. 166, 368–79 (1978)CrossRefGoogle Scholar
  10. 10.
    Hewick, R.M., Hunkapiller, M.W., Hood, L.E., Dreyer, W.J.: A gas-liquid phase peptide and protein sequenator. J. Biol. Chem. 256, 7990–7997 (1981)PubMedGoogle Scholar
  11. 11.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)PubMedGoogle Scholar
  12. 12.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 256–275 (1951)Google Scholar
  13. 13.
    Tateno, H., Mori, A., Uchiyama, N., Yabe, R., Iwaki, J., Shikanai, Y., Angata, T., Narimatsu, H., Hirabayashi, J.: Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology 18, 789–798 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    Van Damme, E.J.M., Nakamura-Tsuruta, S., SMITH, D.F., Ongenaert, M., Winter, H.C., Rouge, P., Goldstein, I.J., Mo, H., Kominami, J., Culerrier, R., Barre, A., Hirabayashi, J., Peumans, W.J.: Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution. Biochem. J 404, 51–61 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    Peumans, W.J., Barre, A., Bras, J., Rougé, P., Proost, P., Van Damme, E.J.M.: The liverwort contains a lectin that is structurally and evolutionary related to the monocot mannose-binding lectins. Plant Physiol. 129, 1054–1065 (2002)PubMedCrossRefGoogle Scholar
  16. 16.
    Fouquaert, E., Peumans, W.J., Gheysen, G., Van Damme, E.J.M.: Identical homologs of the Galanthus nivalis agglutinin in Zea mays and Fusarium verticillioides. Plant Physiol. Biochem. 49, 46–54 (2011)PubMedCrossRefGoogle Scholar
  17. 17.
    Van Damme, E.J.M., Smeets, K., Engelborghs, I., Aelbers, H., Balzarini, J., Pusztai, A., Leuven, F., Goldstein, I.J., Peumans, W.J.: Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol. Biol. 23, 365–376 (1993)PubMedCrossRefGoogle Scholar
  18. 18.
    Van Damme, E.J.M., Lannoo, N., Peumans, W.J.: Plant lectins. Adv. Bot. Res. 48, 107–209 (2008)CrossRefGoogle Scholar
  19. 19.
    Van Damme, E.J.M., Kaku, H., Perini, F., Goldstein, I.J., Peeters, B., Yagi, F., Decock, B., Peumans, W.J.: Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur. J. Biochem. 202, 23–30 (1991)PubMedCrossRefGoogle Scholar
  20. 20.
    Bhat, G.G., Shetty, K.N., Nagre, N.N., Neekhra, V.V., Lingaraju, S., Bhat, R.S., Inamdar, S.R., Suguna, K., Swamy, B.M.: Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity. Glycoconj. J. 27, 309–320 (2010)PubMedCrossRefGoogle Scholar
  21. 21.
    Elo, J., Estola, E., Malmstrom, N.: On phytoagglutinins present in mushrooms. Ann. Med. Exp. Fenn. 29, 297–308 (1951)Google Scholar
  22. 22.
    Elo, J., Estola, E.: Phytoagglutinins present in Marasmius oreades. Ann. Med. Exp. Biol. Fenn. 30, 165–167 (1952)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michiko Shimokawa
    • 1
  • Ayako Fukudome
    • 2
  • Ryoko Yamashita
    • 2
  • Yuji Minami
    • 2
  • Fumio Yagi
    • 2
    Email author
  • Hiroaki Tateno
    • 3
  • Jun Hirabayashi
    • 3
  1. 1.Department of Applied Biological Chemistry, The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Department of Biochemical Science and Technology, Faculty of AgricultureKagoshima UniversityKagoshimaJapan
  3. 3.Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and TechnologyIbarakiJapan

Personalised recommendations