Glycoconjugate Journal

, Volume 29, Issue 5–6, pp 259–271 | Cite as

Carbohydrate-based cancer vaccines: target cancer with sugar bullets

Article

Abstract

With the booming development of glycobiology and glycochemistry, more and more structures of tumor-associated carbohydrate antigens (TACAs) are identified. Their broad expression and high specificity in cancer make them important targets to develop cancer vaccines or immunotherapies. However, most of the TACAs are T cell-independent antigens, they cannot elicit a powerful enough immune response to prevent or treat cancer. Immunotolerance and immunosuppression are more easily induced due to their endogenous properties and the declining immunity of the patients. This review summarizes the recent efforts to overcome these obstacles: coupling the carbohydrate antigens to proper carriers such as proteins or some small molecule carriers, and chemically modifying the structures of the TACAs to enhance the immunogenicity of TACAs and break the immunotolerance.

Keywords

Carbohydrate-based anti-cancer vaccine Immunotherapy Immune tolerance Antigen Carrier 

Notes

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (81172916) and “973” grant from the Ministry of Science and Technology of China (2012CB822100).

References

  1. 1.
    Coley, W.B.: The treatment of malignat tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–510 (1893)Google Scholar
  2. 2.
    Dougan, M., Dranoff, G.: Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009)PubMedGoogle Scholar
  3. 3.
    Buonaguro, L., Petrizzo, A., Tornesello, M.L., Buonaguro, F.M.: Translating tumor antigens into cancer vaccines. Clin. Vaccine Immunol. 18, 23–34 (2011)PubMedGoogle Scholar
  4. 4.
    Chiang, C.L., Kandalaft, L.E., Coukos, G.: Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int. Rev. Immunol. 30, 150–182 (2011)PubMedGoogle Scholar
  5. 5.
    Dranoff, G.: GM-CSF-based cancer vaccines. Immunol. Rev. 188, 147–154 (2002)PubMedGoogle Scholar
  6. 6.
    Jinushi, M., Hodi, F.S., Dranoff, G.: Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol. Rev. 222, 287–298 (2008)PubMedGoogle Scholar
  7. 7.
    Emens, L.A.: GM-CSF-secreting vaccines for solid tumors. Curr. Opin. Investig. Drugs 10, 1315–1324 (2009)PubMedGoogle Scholar
  8. 8.
    Harris, J.E., Ryan, L., Hoover Jr., H.C., Stuart, R.K., Oken, M.M., Benson 3rd, A.B., Mansour, E., Haller, D.G., Manola, J., Hanna Jr., M.G.: Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J. Clin. Oncol. 18, 148–157 (2000)PubMedGoogle Scholar
  9. 9.
    Berd, D., Sato, T., Maguire Jr., H.C., Kairys, J., Mastrangelo, M.J.: Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J. Clin. Oncol. 22, 403–415 (2004)PubMedGoogle Scholar
  10. 10.
    De Gruijl, T.D., van den Eertwegh, A.J., Pinedo, H.M., Scheper, R.J.: Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother. 57, 1569–1577 (2008)PubMedGoogle Scholar
  11. 11.
    Lesterhuis, W.J., Aarntzen, E.H., De Vries, I.J., Schuurhuis, D.H., Figdor, C.G., Adema, G.J., Punt, C.J.: Dendritic cell vaccines in melanoma: from promise to proof? Crit. Rev. Oncol. Hematol. 66, 118–134 (2008)PubMedGoogle Scholar
  12. 12.
    Higano, C.S., Schellhammer, P.F., Small, E.J., Burch, P.A., Nemunaitis, J., Yuh, L., Provost, N., Frohlich, M.W.: Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679 (2009)PubMedGoogle Scholar
  13. 13.
    Murshid, A., Gong, J., Calderwood, S.K.: Heat-shock proteins in cancer vaccines: Agents of antigen cross-presentation. Expert Rev. Vaccines 7, 1019–1030 (2008)PubMedGoogle Scholar
  14. 14.
    Xie, J., Zhu, H., Guo, L., Ruan, Y., Wang, L., Sun, L., Zhou, L., Wu, W., Yun, X., Shen, A., Gu, J.: Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J. Immunol. 185, 2306–2313 (2010)PubMedGoogle Scholar
  15. 15.
    Mazzaferro, V., Coppa, J., Carrabba, M.G., Rivoltini, L., Schiavo, M., Regalia, E., Mariani, L., Camerini, T., Marchiano, A., Andreola, S., Camerini, R., Corsi, M., Lewis, J.J., Srivastava, P.K., Parmiani, G.: Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res. 9, 3235–3245 (2003)PubMedGoogle Scholar
  16. 16.
    Testori, A., Richards, J., Whitman, E., Mann, G.B., Lutzky, J., Camacho, L., Parmiani, G., Tosti, G., Kirkwood, J.M., Hoos, A., Yuh, L., Gupta, R., Srivastava, P.K.: Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 study group. J. Clin. Oncol. 26, 955–962 (2008)PubMedGoogle Scholar
  17. 17.
    Wood, C., Srivastava, P., Bukowski, R., Lacombe, L., Gorelov, A.I., Gorelov, S., Mulders, P., Zielinski, H., Hoos, A., Teofilovici, F., Isakov, L., Flanigan, R., Figlin, R., Gupta, R., Escudier, B.: An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372, 145–154 (2008)PubMedGoogle Scholar
  18. 18.
    Dalgleish, A., Pandha, H.: Tumor antigens as surrogate markers and targets for therapy and vaccines. Adv. Cancer Res. 96, 175–190 (2007)PubMedGoogle Scholar
  19. 19.
    Caspi, R.R.: Immunotherapy of autoimmunity and cancer: The penalty for success. Nat. Rev. Immunol. 8, 970–976 (2008)PubMedGoogle Scholar
  20. 20.
    Dalgleish, A.G.: Therapeutic cancer vaccines: why so few randomised phase III studies reflect the initial optimism of phase II studies. Vaccine 29, 8501–8505 (2011)PubMedGoogle Scholar
  21. 21.
    Ragupathi, G.: Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol. Immunother. 43, 152–157 (1996)PubMedGoogle Scholar
  22. 22.
    Sanders, D.S., Kerr, M.A.: Lewis blood group and CEA related antigens; coexpressed cell-cell adhesion molecules with roles in the biological progression and dissemination of tumours. Mol. Pathol. 52, 174–178 (1999)PubMedGoogle Scholar
  23. 23.
    Dennis, J.W., Granovsky, M., Warren, C.E.: Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999)PubMedGoogle Scholar
  24. 24.
    Hakomori, S.: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 491, 369–402 (2001)PubMedGoogle Scholar
  25. 25.
    Werther, J.L., Tatematsu, M., Klein, R., Kurihara, M., Kumagai, K., Llorens, P., Guidugli Neto, J., Bodian, C., Pertsemlidis, D., Yamachika, T., Kitou, T., Itzkowitz, S.: Sialosyl-Tn antigen as a marker of gastric cancer progression: an international study. Int. J. Cancer 69, 193–199 (1996)PubMedGoogle Scholar
  26. 26.
    Kobata, A., Amano, J.: Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol. Cell Biol. 83, 429–439 (2005)PubMedGoogle Scholar
  27. 27.
    Cazet, A., Julien, S., Bobowski, M., Burchell, J., Delannoy, P.: Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 12, 204 (2010)PubMedGoogle Scholar
  28. 28.
    Heimburg-Molinaro, J., Lum, M., Vijay, G., Jain, M., Almogren, A., Rittenhouse-Olson, K.: Cancer vaccines and carbohydrate epitopes. Vaccine 29, 8802–8826 (2011)PubMedGoogle Scholar
  29. 29.
    Komminoth, P., Roth, J., Lackie, P.M., Bitter-Suermann, D., Heitz, P.U.: Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids. Am. J. Pathol. 139, 297–304 (1991)PubMedGoogle Scholar
  30. 30.
    Dennis, J.W.: N-linked oligosaccharide processing and tumor cell biology. Semin. Cancer Biol. 2, 411–420 (1991)PubMedGoogle Scholar
  31. 31.
    Fernandes, B., Sagman, U., Auger, M., Demetrio, M., Dennis, J.W.: Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 51, 718–723 (1991)PubMedGoogle Scholar
  32. 32.
    Couldrey, C., Green, J.E.: Metastases: the glycan connection. Breast Cancer Res. 2, 321–323 (2000)PubMedGoogle Scholar
  33. 33.
    Yamashita, K., Tachibana, Y., Ohkura, T., Kobata, A.: Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J. Biol. Chem. 260, 3963–3969 (1985)PubMedGoogle Scholar
  34. 34.
    Dennis, J.W., Kosh, K., Bryce, D.M., Breitman, M.L.: Oncogenes conferring metastatic potential induce increased branching of Asn-linked oligosaccharides in rat2 fibroblasts. Oncogene 4, 853–860 (1989)PubMedGoogle Scholar
  35. 35.
    Astronomo, R.D., Burton, D.R.: Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discov. 9, 308–324 (2010)PubMedGoogle Scholar
  36. 36.
    Helling, F., Shang, A., Calves, M., Zhang, S., Ren, S., Yu, R.K., Oettgen, H.F., Livingston, P.O.: GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 54, 197–203 (1994)PubMedGoogle Scholar
  37. 37.
    Plante, O.J., Palmacci, E.R., Seeberger, P.H.: Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001)PubMedGoogle Scholar
  38. 38.
    Zhang, Z., Ollmann, I.R., Ye, X.S., Wischnat, R., Baasov, T., Wong, C.H.: Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–753 (1999)Google Scholar
  39. 39.
    Huang, X., Huang, L., Wang, H., Ye, X.S.: Iterative one-pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 43, 5221–5224 (2004)Google Scholar
  40. 40.
    Morel, P.A., Turner, M.S.: Designing the optimal vaccine: the importance of cytokines and dendritic cells. Open Vaccine J. 3, 7–17 (2010)PubMedGoogle Scholar
  41. 41.
    Hochweller, K., Anderton, S.M.: Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo. Eur. J. Immunol. 35, 1086–1096 (2005)PubMedGoogle Scholar
  42. 42.
    Flinsenberg, T.W.H., Compeer, E.B., Boelens, J.J., Boes, M.: Antigen cross-presentation: extending recent laboratory findings to therapeutic intervention. Clin. Exp. Immunol. 165, 8–18 (2011)PubMedGoogle Scholar
  43. 43.
    Cyster, J.G.: Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999)PubMedGoogle Scholar
  44. 44.
    Shuptrine, C.W., Surana, R., Weiner, L.M.: Monoclonal antibodies for the treatment of cancer. Semin. Cancer Biol. 22, 3–13 (2012)PubMedGoogle Scholar
  45. 45.
    Dunkelberger, J.R., Song, W.C.: Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010)PubMedGoogle Scholar
  46. 46.
    Zipfel, P.F., Skerka, C.: Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009)PubMedGoogle Scholar
  47. 47.
    Ferris, R.L., Jaffee, E.M., Ferrone, S.: Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J. Clin. Oncol. 28, 4390–4399 (2010)PubMedGoogle Scholar
  48. 48.
    Kuduk, S.D., Schwarz, J.B., Chen, X.T., Glunz, P.W., Sames, D., Ragupathi, G., Livingston, P.O., Danishefsky, S.J.: Synthetic and immunological studies on clustered modes of mucin-related Tn and TF O-linked antigens: the preparation of a glycopeptide-based vaccine for clinical trials against prostate Cancer. J. Am. Chem. Soc. 120, 12474–12485 (1998)Google Scholar
  49. 49.
    Adluri, S., Helling, F., Ogata, S., Zhang, S., Itzkowitz, S.H., Lloyd, K.O., Livingston, P.O.: Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol. Immunother. 41, 185–192 (1995)PubMedGoogle Scholar
  50. 50.
    Fung, P.Y., Madej, M., Koganty, R.R., Longenecker, B.M.: Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer Res. 50, 4308–4314 (1990)PubMedGoogle Scholar
  51. 51.
    Livingston, P.O.: Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside-KLH conjugate vaccines. Immunol. Rev. 145, 147–166 (1995)PubMedGoogle Scholar
  52. 52.
    Helling, F., Zhang, S., Shang, A., Adluri, S., Calves, M., Koganty, R., Longenecker, B.M., Yao, T.J., Oettgen, H.F., Livingston, P.O.: GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res. 55, 2783–2788 (1995)PubMedGoogle Scholar
  53. 53.
    Gilewski, T., Ragupathi, G., Bhuta, S., Williams, L.J., Musselli, C., Zhang, X.F., Bornmann, W.G., Spassova, M., Bencsath, K.P., Panageas, K.S., Chin, J., Hudis, C.A., Norton, L., Houghton, A.N., Livingston, P.O., Danishefsky, S.J.: Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc. Natl. Acad. Sci. USA 98, 3270–3275 (2001)PubMedGoogle Scholar
  54. 54.
    Ragupathi, G., Slovin, S.F., Adluri, S., Sames, D., Kim, I.J., Kim, H.M., Spassova, M., Bornmann, W.G., Lloyd, K.O., Scher, H.I., Livingston, P.O., Danishefsky, S.J.: A fully synthetic globo H carbohydrate vaccine induces a focused humoral response in prostate cancer patients: a proof of principle. Angew. Chem. Int. Ed. 38, 563–566 (1999)Google Scholar
  55. 55.
    Slovin, S.F., Ragupathi, G., Adluri, S., Ungers, G., Terry, K., Kim, S., Spassova, M., Bornmann, W.G., Fazzari, M., Dantis, L., Olkiewicz, K., Lloyd, K.O., Livingston, P.O., Danishefsky, S.J., Scher, H.I.: Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl. Acad. Sci. USA 96, 5710–5715 (1999)PubMedGoogle Scholar
  56. 56.
    Eggermont, A.M.M.: Therapeutic vaccines in solid tumours: can they be harmful? Eur. J. Cancer. 45, 2087–2090 (2009)PubMedGoogle Scholar
  57. 57.
    Holmberg, L.A., Sandmaier, B.M.: Vaccination with Theratope (STn-KLH) as treatment for breast cancer. Expert Rev. Vaccines 3, 655–663 (2004)PubMedGoogle Scholar
  58. 58.
    Slovin, S.F., Keding, S.J., Ragupathi, G.: Carbohydrate vaccines as immunotherapy for cancer. Immunol. Cell Biol. 83, 418–428 (2005)PubMedGoogle Scholar
  59. 59.
    Hollingsworth, M.A., Swanson, B.J.: Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004)PubMedGoogle Scholar
  60. 60.
    Zhang, S., Walberg, L.A., Ogata, S., Itzkowitz, S.H., Koganty, R.R., Reddish, M., Gandhi, S.S., Longenecker, B.M., Lloyd, K.O., Livingston, P.O.: Immune sera and monoclonal antibodies define two configurations for the sialyl Tn tumor antigen. Cancer Res. 55, 3364–3368 (1995)PubMedGoogle Scholar
  61. 61.
    Slovin, S.F., Ragupathi, G., Musselli, C., Fernandez, C., Diani, M., Verbel, D., Danishefsky, S., Livingston, P., Scher, H.I.: Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 54, 694–702 (2005)PubMedGoogle Scholar
  62. 62.
    Kagan, E., Ragupathi, G., Yi, S.S., Reis, C.A., Gildersleeve, J., Kahne, D., Clausen, H., Danishefsky, S.J., Livingston, P.O.: Comparison of antigen constructs and carrier molecules for augmenting the immunogenicity of the monosaccharide epithelial cancer antigen Tn. Cancer Immunol. Immunother. 54, 424–430 (2005)PubMedGoogle Scholar
  63. 63.
    Kaiser, A., Gaidzik, N., Westerlind, U., Kowalczyk, D., Hobel, A., Schmitt, E., Kunz, H.: A synthetic vaccine consisting of a tumor-associated sialyl-T(N)-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew. Chem. Int. Ed. 48, 7551–7555 (2009)Google Scholar
  64. 64.
    Gaidzik, N., Kaiser, A., Kowalczyk, D., Westerlind, U., Gerlitzki, B., Sinn, H.P., Schmitt, E., Kunz, H.: Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains-induction of a strong immune response against breast tumor tissues. Angew. Chem. Int. Ed. 50, 9977–9981 (2011)Google Scholar
  65. 65.
    Hoffmann-Roder, A., Kaiser, A., Wagner, S., Gaidzik, N., Kowalczyk, D., Westerlind, U., Gerlitzki, B., Schmitt, E., Kunz, H.: Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew. Chem. Int. Ed. 49, 8498–8503 (2010)Google Scholar
  66. 66.
    Livingston, P.O.: The unfulfilled promise of melanoma vaccines. Clin. Cancer Res. 7, 1837–1838 (2001)PubMedGoogle Scholar
  67. 67.
    Ragupathi, G., Cappello, S., Yi, S.S., Canter, D., Spassova, M., Bornmann, W.G., Danishefsky, S.J., Livingston, P.O.: Comparison of antibody titers after immunization with monovalent or tetravalent KLH conjugate vaccines. Vaccine 20, 1030–1038 (2002)PubMedGoogle Scholar
  68. 68.
    Ragupathi, G., Koide, F., Sathyan, N., Kagan, E., Spassova, M., Bornmann, W., Gregor, P., Reis, C.A., Clausen, H., Danishefsky, S.J., Livingston, P.O.: A preclinical study comparing approaches for augmenting the immunogenicity of a heptavalent KLH-conjugate vaccine against epithelial cancers. Cancer Immunol. Immunother. 52, 608–616 (2003)PubMedGoogle Scholar
  69. 69.
    Barington, T., Gyhrs, A., Kristensen, K., Heilmann, C.: Opposite effects of actively and passively acquired immunity to the carrier on responses of human infants to a Haemophilus influenzae type b conjugate vaccine. Infect Immun. 62, 9–14 (1994)PubMedGoogle Scholar
  70. 70.
    Peeters, C.C., Tenbergen-Meekes, A.M., Poolman, J.T., Beurret, M., Zegers, B.J., Rijkers, G.T.: Effect of carrier priming on immunogenicity of saccharide-protein conjugate vaccines. Infect Immun. 59, 3504–3510 (1991)PubMedGoogle Scholar
  71. 71.
    Fattom, A., Cho, Y.H., Chu, C., Fuller, S., Fries, L., Naso, R.: Epitopic overload at the site of injection may result in suppression of the immune response to combined capsular polysaccharide conjugate vaccines. Vaccine 17, 126–133 (1999)PubMedGoogle Scholar
  72. 72.
    Allen, J.R., Harris, C.R., Danishefsky, S.J.: Pursuit of optimal carbohydrate-based anticancer vaccines: preparation of a multiantigenic unimolecular glycopeptide containing the Tn, MBr1, and Lewis(y) antigens. J. Am. Chem. Soc. 123, 1890–1897 (2001)PubMedGoogle Scholar
  73. 73.
    Ragupathi, G., Coltart, D.M., Williams, L.J., Koide, F., Kagan, E., Allen, J., Harris, C., Glunz, P.W., Livingston, P.O., Danishefsky, S.J.: On the power of chemical synthesis: immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proc. Natl. Acad. Sci. USA 99, 13699–13704 (2002)PubMedGoogle Scholar
  74. 74.
    Keding, S.J., Danishefsky, S.J.: Prospects for total synthesis: a vision for a totally synthetic vaccine targeting epithelial tumors. Proc. Natl. Acad. Sci. USA 101, 11937–11942 (2004)PubMedGoogle Scholar
  75. 75.
    Ragupathi, G., Koide, F., Livingston, P.O., Cho, Y.S., Endo, A., Wan, Q., Spassova, M.K., Keding, S.J., Allen, J., Ouerfelli, O., Wilson, R.M., Danishefsky, S.J.: Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J. Am. Chem. Soc. 128, 2715–2725 (2006)PubMedGoogle Scholar
  76. 76.
    McCool, T.L., Harding, C.V., Greenspan, N.S., Schreiber, J.R.: B- and T-cell immune responses to pneumococcal conjugate vaccines: divergence between carrier- and polysaccharide-specific immunogenicity. Infect Immun. 67, 4862–4869 (1999)PubMedGoogle Scholar
  77. 77.
    Herzenberg, L.A., Tokuhisa, T.: Carrier-priming leads to hapten-specific suppression. Nature 285, 664–667 (1980)PubMedGoogle Scholar
  78. 78.
    Buskas, T., Thompson, P., Boons, G.J.: Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem. Commun. 36, 5335–5349 (2009)Google Scholar
  79. 79.
    Buskas, T., Li, Y., Boons, G.J.: The immunogenicity of the tumor-associated antigen Lewis(y) may be suppressed by a bifunctional cross-linker required for coupling to a carrier protein. Chem. Eur. J. 10, 3517–3524 (2004)PubMedGoogle Scholar
  80. 80.
    Kumagai, Y., Akira, S.: Identification and functions of pattern-recognition receptors. J. Allergy Clin. Immunol. 125, 985–992 (2010)PubMedGoogle Scholar
  81. 81.
    Mahnke, K., Schmitt, E., Bonifaz, L., Enk, A.H., Jonuleit, H.: Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol. Cell Biol. 80, 477–483 (2002)PubMedGoogle Scholar
  82. 82.
    Olive, C.: Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev. Vaccines 11, 237–256 (2012)PubMedGoogle Scholar
  83. 83.
    He, L.Z., Crocker, A., Lee, J., Mendoza-Ramirez, J., Wang, X.T., Vitale, L.A., O’Neill, T., Petromilli, C., Zhang, H.F., Lopez, J., Rohrer, D., Keler, T., Clynes, R.: Antigenic targeting of the human mannose receptor induces tumor immunity. J. Immunol. 178, 6259–6267 (2007)PubMedGoogle Scholar
  84. 84.
    Keler, T., Ramakrishna, V., Fanger, M.W.: Mannose receptor-targeted vaccines. Expert. Opin. Biol. Ther. 4, 1953–1962 (2004)PubMedGoogle Scholar
  85. 85.
    Apostolopoulos, V., Pietersz, G.A., Loveland, B.E., Sandrin, M.S., McKenzie, I.F.: Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc. Natl. Acad. Sci. USA 92, 10128–10132 (1995)PubMedGoogle Scholar
  86. 86.
    Apostolopoulos, V., Pietersz, G.A., Gordon, S., Martinez-Pomares, L., McKenzie, I.F.: Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur. J. Immunol. 30, 1714–1723 (2000)PubMedGoogle Scholar
  87. 87.
    Apostolopoulos, V., Pietersz, G.A., McKenzie, I.F.: Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine 14, 930–938 (1996)PubMedGoogle Scholar
  88. 88.
    Apostolopoulos, V., Barnes, N., Pietersz, G.A., McKenzie, I.F.: Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine 18, 3174–3184 (2000)PubMedGoogle Scholar
  89. 89.
    Karanikas, V., Hwang, L.A., Pearson, J., Ong, C.S., Apostolopoulos, V., Vaughan, H., Xing, P.X., Jamieson, G., Pietersz, G., Tait, B., Broadbent, R., Thynne, G., McKenzie, I.F.: Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100, 2783–2792 (1997)PubMedGoogle Scholar
  90. 90.
    Alexander, J., Sidney, J., Southwood, S., Ruppert, J., Oseroff, C., Maewal, A., Snoke, K., Serra, H.M., Kubo, R.T., Sette, A., et al.: Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1, 751–761 (1994)PubMedGoogle Scholar
  91. 91.
    Alexander, J., Del Guercio, M.F., Maewal, A., Qiao, L., Fikes, J., Chesnut, R.W., Paulson, J., Bundle, D.R., DeFrees, S., Sette, A.: Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. J. Immunol. 164, 1625–1633 (2000)PubMedGoogle Scholar
  92. 92.
    Martinez-Kinader, B., Lipford, G.B., Wagner, H., Heeg, K.: Sensitization of MHC class I-restricted T cells to exogenous proteins: evidence for an alternative class I-restricted antigen presentation pathway. Immunology 86, 287–295 (1995)PubMedGoogle Scholar
  93. 93.
    Metzger, J., Jung, G., Bessler, W.G., Hoffmann, P., Strecker, M., Lieberknecht, A., Schmidt, U.: Lipopeptides containing 2-(palmitoylamino)-6,7-bis(palmitoyloxy) heptanoic acid: synthesis, stereospecific stimulation of B-lymphocytes and macrophages, and adjuvanticity in vivo and in vitro. J. Med. Chem. 34, 1969–1974 (1991)PubMedGoogle Scholar
  94. 94.
    Spohn, R., Buwitt-Beckmann, U., Brock, R., Jung, G., Ulmer, A.J., Wiesmuller, K.H.: Synthetic lipopeptide adjuvants and Toll-like receptor 2–structure-activity relationships. Vaccine 22, 2494–2499 (2004)PubMedGoogle Scholar
  95. 95.
    Toyokuni, T., Dean, B., Cai, S., Boivin, D., Hakomori, S., Singhal, A.K.: Synthetic vaccines: synthesis of a dimeric Tn antigen-lipopeptide conjugate that elicits immune responses against Tn-expressing glycoproteins. J. Am. Chem. Soc. 116, 395–396 (1994)Google Scholar
  96. 96.
    Kudryashov, V., Glunz, P.W., Williams, L.J., Hintermann, S., Danishefsky, S.J., Lloyd, K.O.: Toward optimized carbohydrate-based anticancer vaccines: epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewis(y) conjugates in mice. Proc. Natl. Acad. Sci. USA 98, 3264–3269 (2001)PubMedGoogle Scholar
  97. 97.
    Cai, H., Huang, Z.H., Shi, L., Zhao, Y.F., Kunz, H., Li, Y.M.: Towards a fully synthetic MUC1-based anticancer vaccine: efficient conjugation of glycopeptides with mono-, di-, and tetravalent lipopeptides using click chemistry. Chem. Eur. J. 17, 6396–6406 (2011)PubMedGoogle Scholar
  98. 98.
    Casella, C.R., Mitchell, T.C.: Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol. Life Sci. 65, 3231–3240 (2008)PubMedGoogle Scholar
  99. 99.
    Zhang, Y., Gaekwad, J., Wolfert, M.A., Boons, G.J.: Modulation of innate immune responses with synthetic lipid A derivatives. J. Am. Chem. Soc. 129, 5200–5216 (2007)PubMedGoogle Scholar
  100. 100.
    Wang, Q., Zhou, Z., Tang, S., Guo, Z.: Carbohydrate-monophosphoryl lipid a conjugates are fully synthetic self-adjuvanting cancer vaccines eliciting robust immune responses in the mouse. ACS Chem. Biol. 7, 235–240 (2012)PubMedGoogle Scholar
  101. 101.
    Bay, S., Lo-Man, R., Osinaga, E., Nakada, H., Leclerc, C., Cantacuzene, D.: Preparation of a multiple antigen glycopeptide (MAG) carrying the Tn antigen. A possible approach to a synthetic carbohydrate vaccine. J. Pept. Res. 49, 620–625 (1997)PubMedGoogle Scholar
  102. 102.
    Lo-Man, R., Bay, S., Vichier-Guerre, S., Deriaud, E., Cantacuzene, D., Leclerc, C.: A fully synthetic immunogen carrying a carcinoma-associated carbohydrate for active specific immunotherapy. Cancer Res. 59, 1520–1524 (1999)PubMedGoogle Scholar
  103. 103.
    Lo-Man, R., Vichier-Guerre, S., Bay, S., Deriaud, E., Cantacuzene, D., Leclerc, C.: Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide displaying a tri-Tn glycotope. J. Immunol. 166, 2849–2854 (2001)PubMedGoogle Scholar
  104. 104.
    Lo-Man, R., Vichier-Guerre, S., Perraut, R., Deriaud, E., Huteau, V., BenMohamed, L., Diop, O.M., Livingston, P.O., Bay, S., Leclerc, C.: A fully synthetic therapeutic vaccine candidate targeting carcinoma-associated Tn carbohydrate antigen induces tumor-specific antibodies in nonhuman primates. Cancer Res. 64, 4987–4994 (2004)PubMedGoogle Scholar
  105. 105.
    Grigalevicius, S., Chierici, S., Renaudet, O., Lo-Man, R., Deriaud, E., Leclerc, C., Dumy, P.: Chemoselective assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjug. Chem. 16, 1149–1159 (2005)PubMedGoogle Scholar
  106. 106.
    Dziadek, S., Hobel, A., Schmitt, E., Kunz, H.: A fully synthetic vaccine consisting of a tumor-associated glycopeptide antigen and a T-cell epitope for the induction of a highly specific humoral immune response. Angew. Chem. Int. Ed. 44, 7630–7635 (2005)Google Scholar
  107. 107.
    Cremer, G.A., Bureaud, N., Piller, V., Kunz, H., Piller, F., Delmas, A.F.: Synthesis and biological evaluation of a multiantigenic Tn/TF-containing glycopeptide mimic of the tumor-related MUC1 glycoprotein. ChemMedChem. 1, 965–968 (2006)PubMedGoogle Scholar
  108. 108.
    Buskas, T., Ingale, S., Boons, G.J.: Towards a fully synthetic carbohydrate-based anticancer vaccine: synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated tn antigen. Angew. Chem. Int. Ed. 44, 5985–5988 (2005)Google Scholar
  109. 109.
    Ingale, S., Buskas, T., Boons, G.J.: Synthesis of glyco(lipo)peptides by liposome-mediated native chemical ligation. Org. Lett. 8, 5785–5788 (2006)PubMedGoogle Scholar
  110. 110.
    Ingale, S., Wolfert, M.A., Gaekwad, J., Buskas, T., Boons, G.J.: Robust immune responses elicited by a fully synthetic three-component vaccine. Nat. Chem. Biol. 3, 663–667 (2007)PubMedGoogle Scholar
  111. 111.
    Lakshminarayanan, V., Thompson, P., Wolfert, M.A., Buskas, T., Bradley, J.M., Pathangey, L.B., Madsen, C.S., Cohen, P.A., Gendler, S.J., Boons, G.J.: Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc. Natl. Acad. Sci. USA 109, 261–266 (2012)PubMedGoogle Scholar
  112. 112.
    Ingale, S., Wolfert, M.A., Buskas, T., Boons, G.J.: Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors. ChemBioChem. 10, 455–463 (2009)PubMedGoogle Scholar
  113. 113.
    Bettahi, I., Dasgupta, G., Renaudet, O., Chentoufi, A.A., Zhang, X., Carpenter, D., Yoon, S., Dumy, P., BenMohamed, L.: Antitumor activity of a self-adjuvanting glyco-lipopeptide vaccine bearing B cell, CD4+ and CD8+ T cell epitopes. Cancer Immunol. Immunother. 58, 187–200 (2009)PubMedGoogle Scholar
  114. 114.
    Abdel-Motal, U., Wang, S., Lu, S., Wigglesworth, K., Galili, U.: Increased immunogenicity of human immunodeficiency virus gp120 engineered to express Galalpha1-3Galbeta1-4GlcNAc-R epitopes. J. Virol. 80, 6943–6951 (2006)PubMedGoogle Scholar
  115. 115.
    Abdel-Motal, U.M., Guay, H.M., Wigglesworth, K., Welsh, R.M., Galili, U.: Immunogenicity of influenza virus vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells. J. Virol. 81, 9131–9141 (2007)PubMedGoogle Scholar
  116. 116.
    Sarkar, S., Lombardo, S.A., Herner, D.N., Talan, R.S., Wall, K.A., Sucheck, S.J.: Synthesis of a single-molecule L-rhamnose-containing three-component vaccine and evaluation of antigenicity in the presence of anti-L-rhamnose antibodies. J. Am. Chem. Soc. 132, 17236–17246 (2010)Google Scholar
  117. 117.
    Tzianabos, A.O., Onderdonk, A.B., Rosner, B., Cisneros, R.L., Kasper, D.L.: Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993)PubMedGoogle Scholar
  118. 118.
    Mazmanian, S.K., Kasper, D.L.: The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849–858 (2006)PubMedGoogle Scholar
  119. 119.
    Cobb, B.A., Wang, Q., Tzianabos, A.O., Kasper, D.L.: Polysaccharide processing and presentation by the MHCII pathway. Cell 117, 677–687 (2004)PubMedGoogle Scholar
  120. 120.
    Duan, J., Avci, F.Y., Kasper, D.L.: Microbial carbohydrate depolymerization by antigen-presenting cells: deamination prior to presentation by the MHCII pathway. Proc. Natl. Acad. Sci. USA 105, 5183–5188 (2008)PubMedGoogle Scholar
  121. 121.
    De Silva, R.A., Wang, Q., Chidley, T., Appulage, D.K., Andreana, P.R.: Immunological response from an entirely carbohydrate antigen: design of synthetic vaccines based on Tn − PS A1 Conjugates. J. Am. Chem. Soc. 131, 9622–9623 (2009)PubMedGoogle Scholar
  122. 122.
    De Silva, R., Appulage, D., Pietraszkiewicz, H., Bobbitt, K., Media, J., Shaw, J., Valeriote, F., Andreana, P.: The entirely carbohydrate immunogen Tn-PS A1 induces a cancer cell selective immune response and cytokine IL-17. Cancer Immunol. Immunother. 61, 581–585 (2012)PubMedGoogle Scholar
  123. 123.
    Krishnamachari, Y., Geary, S.M., Lemke, C.D., Salem, A.K.: Nanoparticle delivery systems in cancer vaccines. Pharm. Res. 28, 215–236 (2011)PubMedGoogle Scholar
  124. 124.
    Ojeda, R., de Paz, J.L., Barrientos, A.G., Martin-Lomas, M., Penades, S.: Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydr. Res. 342, 448–459 (2007)PubMedGoogle Scholar
  125. 125.
    Dube, D.H., Bertozzi, C.R.: Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003)PubMedGoogle Scholar
  126. 126.
    Lemieux, G.A., Bertozzi, C.R.: Modulating cell surface immunoreactivity by metabolic induction of unnatural carbohydrate antigens. Chem. Biol. 8, 265–275 (2001)PubMedGoogle Scholar
  127. 127.
    Liu, T., Guo, Z., Yang, Q., Sad, S., Jennings, H.J.: Biochemical engineering of surface alpha 2-8 polysialic acid for immunotargeting tumor cells. J. Biol. Chem. 275, 32832–32836 (2000)PubMedGoogle Scholar
  128. 128.
    Zou, W., Borrelli, S., Gilbert, M., Liu, T., Pon, R.A., Jennings, H.J.: Bioengineering of surface GD3 ganglioside for immunotargeting human melanoma cells. J. Biol. Chem. 279, 25390–25399 (2004)PubMedGoogle Scholar
  129. 129.
    Guo, Z., Wang, Q.: Recent development in carbohydrate-based cancer vaccines. Curr. Opin. Chem. Biol. 13, 608–617 (2009)PubMedGoogle Scholar
  130. 130.
    Pan, Y., Chefalo, P., Nagy, N., Harding, C., Guo, Z.: Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J. Med. Chem. 48, 875–883 (2005)PubMedGoogle Scholar
  131. 131.
    Chefalo, P., Pan, Y., Nagy, N., Guo, Z., Harding, C.V.: Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry 45, 3733–3739 (2006)PubMedGoogle Scholar
  132. 132.
    Wu, J., Guo, Z.: Improving the antigenicity of sTn antigen by modification of its sialic acid residue for development of glycoconjugate cancer vaccines. Bioconjug. Chem. 17, 1537–1544 (2006)PubMedGoogle Scholar
  133. 133.
    Wang, Q., Ekanayaka, S.A., Wu, J., Zhang, J., Guo, Z.: Synthetic and immunological studies of 5′-N-phenylacetyl sTn to develop carbohydrate-based cancer vaccines and to explore the impacts of linkage between carbohydrate antigens and carrier proteins. Bioconjug. Chem. 19, 2060–2067 (2008)PubMedGoogle Scholar
  134. 134.
    Wang, Q., Guo, Z.: Synthetic and immunological studies of sTn derivatives carrying 5-N-(p-Substituted Phenylacetyl)sialic acid for the development of effective cancer vaccines. ACS Med. Chem. Lett. 2, 373–378 (2011)PubMedGoogle Scholar
  135. 135.
    Jennings, H.J., Gamian, A., Ashton, F.E.: N-propionylated group B meningococcal polysaccharide mimics a unique epitope on group B Neisseria meningitidis. J. Exp. Med. 165, 1207–1211 (1987)PubMedGoogle Scholar
  136. 136.
    Pon, R.A., Lussier, M., Yang, Q.L., Jennings, H.J.: N-Propionylated group B meningococcal polysaccharide mimics a unique bactericidal capsular epitope in group B Neisseria meningitidis. J. Exp. Med. 185, 1929–1938 (1997)PubMedGoogle Scholar
  137. 137.
    Krug, L.M., Ragupathi, G., Ng, K.K., Hood, C., Jennings, H.J., Guo, Z., Kris, M.G., Miller, V., Pizzo, B., Tyson, L., Baez, V., Livingston, P.O.: Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin. Cancer Res. 10, 916–923 (2004)PubMedGoogle Scholar
  138. 138.
    Krug, L.M., Ragupathi, G., Hood, C., George, C., Hong, F., Shen, R., Abrey, L., Jennings, H.J., Kris, M.G., Livingston, P.O.: Immunization with N-propionyl polysialic acid-KLH conjugate in patients with small cell lung cancer is safe and induces IgM antibodies reactive with SCLC cells and bactericidal against group B meningococci. Cancer Immunol. Immunother. 61, 9–18 (2012)PubMedGoogle Scholar
  139. 139.
    Ragupathi, G., Meyers, M., Adluri, S., Howard, L., Musselli, C., Livingston, P.O.: Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int. J. Cancer 85, 659–666 (2000)PubMedGoogle Scholar
  140. 140.
    Ragupathi, G., Livingston, P.O., Hood, C., Gathuru, J., Krown, S.E., Chapman, P.B., Wolchok, J.D., Williams, L.J., Oldfield, R.C., Hwu, W.J.: Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin. Cancer Res. 9, 5214–5220 (2003)PubMedGoogle Scholar
  141. 141.
    Wu, X., Lipinski, T., Paszkiewicz, E., Bundle, D.R.: Synthesis and immunochemical characterization of S-linked glycoconjugate vaccines against Candida albicans. Chem. Eur. J. 14, 6474–6482 (2008)PubMedGoogle Scholar
  142. 142.
    Bundle, D.R., Rich, J.R., Jacques, S., Yu, H.N., Nitz, M., Ling, C.C.: Thiooligosaccharide conjugate vaccines evoke antibodies specific for native antigens. Angew. Chem. Int. Ed. 44, 7725–7729 (2005)Google Scholar
  143. 143.
    Rich, J.R., Bundle, D.R.: S-linked ganglioside analogues for use in conjugate vaccines. Org. Lett. 6, 897–900 (2004)PubMedGoogle Scholar
  144. 144.
    Rich, J.R., Wakarchuk, W.W., Bundle, D.R.: Chemical and chemoenzymatic synthesis of S-linked ganglioside analogues and their protein conjugates for use as immunogens. Chem. Eur. J. 12, 845–858 (2006)PubMedGoogle Scholar
  145. 145.
    Mersch, C., Wagner, S., Hoffmann-Roeder, A.: Synthesis of fluorinated analogues of tumor-associated carbohydrate and glycopeptide antigens. Synlett. 13, 2167–2171 (2009)Google Scholar
  146. 146.
    Wagner, S., Mersch, C., Hoffmann-Röder, A.: Fluorinated glycosyl amino acids for mucin-like glycopeptide antigen analogues. Chem. Eur. J. 16, 7319–7330 (2010)PubMedGoogle Scholar
  147. 147.
    Johannes, M., Oberbillig, T., Hoffmann-Roder, A.: Synthesis of fluorinated Thomsen-Friedenreich antigens: direct deoxyfluorination of alphaGalNAc-threonine tert-butyl esters. Org. Biomol. Chem. 9, 5541–5546 (2011)PubMedGoogle Scholar
  148. 148.
    Hoffmann-Roder, A., Johannes, M.: Synthesis of a MUC1-glycopeptide-BSA conjugate vaccine bearing the 3′-deoxy-3′-fluoro-Thomsen-Friedenreich antigen. Chem. Commun. 47, 9903–9905 (2011)Google Scholar
  149. 149.
    Sahabuddin, S., Chang, T.C., Lin, C.C., Jan, F.D., Hsiao, H.Y., Huang, K.T., Chen, J.H., Horng, J.C., Ho, J.A., Lin, C.C.: Synthesis of N-modified sTn analogs and evaluation of their immunogenicities by microarray-based immunoassay. Tetrahedron 66, 7510–7519 (2010)Google Scholar
  150. 150.
    Yang, F., Zheng, X.J., Huo, C.X., Wang, Y., Zhang, Y., Ye, X.S.: Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem. Biol. 6, 252–259 (2011)PubMedGoogle Scholar
  151. 151.
    Huo, C.X., Ye, X.S.: Synthesis of S-linked tumor-associated carbohydrate antigen STn. J. Chin. Pharm. Sci. 6, 214–217 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina

Personalised recommendations