Glycoconjugate Journal

, Volume 30, Issue 1, pp 41–50 | Cite as

Genomics and epigenomics of the human glycome

  • Vlatka ZoldošEmail author
  • Mislav Novokmet
  • Ivona Bečeheli
  • Gordan LaucEmail author


The majority of all proteins are glycosylated and glycans have numerous important structural, functional and regulatory roles in various physiological processes. While structure of the polypeptide part of a glycoprotein is defined by the sequence of nucleotides in the corresponding gene, structure of a glycan part results from dynamic interactions between hundreds of genes, their protein products and environmental factors. The composition of the glycome attached to an individual protein, or to a complex mixture of proteins, like human plasma, is stable within an individual, but very variable between individuals. This variability stems from numerous common genetic polymorphisms reflecting in changes in the complex biosynthetic pathway of glycans, but also from the interaction with the environment. Environment can affect glycan biosynthesis at the level of substrate availability, regulation of enzyme activity and/or hormonal signals, but also through gene-environment interactions. Epigenetics provides a molecular basis how the environment can modify phenotype of an individual. The epigenetic information (DNA methylation pattern and histone code) is especially vulnerable to environmental effects in the early intrauterine and neo-natal development and many common late-onset diseases take root already at that time. The evidences showing the link between epigenetics and glycosylation are accumulating. Recent progress in high-throughput glycomics, genomics and epigenomics enabled first epidemiological and genome-wide association studies of the glycome, which are presented in this mini-review.


Glycosylation Glycome Genome-wide association study Epigenetics Gene-environment interactions 



The work in author’s laboratory is supported by the Croatian Ministry of Science, Education and Sport grant #309-0061194-2023 (to GL) and #119-1191196-1224 (to VZ), and by the European Commission GlycoBioM (contract #259869) and HighGlycan (contract #278535) grants.


  1. 1.
    Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell 126(5), 855–867 (2006)PubMedCrossRefGoogle Scholar
  2. 2.
    Nairn, A.V., York, W.S., Harris, K., Hall, E.M., Pierce, J.M., Moremen, K.W.: Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283(25), 17298–17313 (2008)PubMedCrossRefGoogle Scholar
  3. 3.
    Yamamoto-Hino, M., Kanie, Y., Awano, W., Aoki-Kinoshita, K.F., Yano, H., Nishihara, S., Okano, H., Ueda, R., Kanie, O., Goto, S.: Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet. 6(12), e1001254 (2010)PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshida, A.: Identification of genotype of blood group A and B. Blood 55(1), 119–123 (1980)PubMedGoogle Scholar
  5. 5.
    Wright, A., Charlesworth, B., Rudan, I., Carothers, A., Campbell, H.: A polygenic basis for late-onset disease. Trends Genet. 19(2), 97–106 (2003)PubMedCrossRefGoogle Scholar
  6. 6.
    Chanock, S.J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D.J., Thomas, G., Hirschhorn, J.N., Abecasis, G., Altshuler, D., Bailey-Wilson, J.E., Brooks, L.D., Cardon, L.R., Daly, M., Donnelly, P., Fraumeni Jr., J.F., Freimer, N.B., Gerhard, D.S., Gunter, C., Guttmacher, A.E., Guyer, M.S., Harris, E.L., Hoh, J., Hoover, R., Kong, C.A., Merikangas, K.R., Morton, C.C., Palmer, L.J., Phimister, E.G., Rice, J.P., Roberts, J., Rotimi, C., Tucker, M.A., Vogan, K.J., Wacholder, S., Wijsman, E.M., Winn, D.M., Collins, F.S.: Replicating genotype-phenotype associations. Nature 447(7145), 655–660 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    Ioannidis, J.P.: Why most published research findings are false. PLoS Med. 2(8), e124 (2005)PubMedCrossRefGoogle Scholar
  8. 8.
    Cardon, L.R., Bell, J.I.: Association study designs for complex diseases. Nat. Rev. Genet. 2(2), 91–99 (2001)PubMedCrossRefGoogle Scholar
  9. 9.
    Vitart, V., Rudan, I., Hayward, C., Gray, N.K., Floyd, J., Palmer, C.N., Knott, S.A., Kolcic, I., Polasek, O., Graessler, J., Wilson, J.F., Marinaki, A., Riches, P.L., Shu, X., Janicijevic, B., Smolej-Narancic, N., Gorgoni, B., Morgan, J., Campbell, S., Biloglav, Z., Barac-Lauc, L., Pericic, M., Klaric, I.M., Zgaga, L., Skaric-Juric, T., Wild, S.H., Richardson, W.A., Hohenstein, P., Kimber, C.H., Tenesa, A., Donnelly, L.A., Fairbanks, L.D., Aringer, M., McKeigue, P.M., Ralston, S.H., Morris, A.D., Rudan, P., Hastie, N.D., Campbell, H., Wright, A.F.: SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 40(4), 437–442 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    Aulchenko, Y.S., Ripatti, S., Lindqvist, I., Boomsma, D., Heid, I.M., Pramstaller, P.P., Penninx, B.W., Janssens, A.C., Wilson, J.F., Spector, T., Martin, N.G., Pedersen, N.L., Kyvik, K.O., Kaprio, J., Hofman, A., Freimer, N.B., Jarvelin, M.R., Gyllensten, U., Campbell, H., Rudan, I., Johansson, A., Marroni, F., Hayward, C., Vitart, V., Jonasson, I., Pattaro, C., Wright, A., Hastie, N., Pichler, I., Hicks, A.A., Falchi, M., Willemsen, G., Hottenga, J.J., de Geus, E.J., Montgomery, G.W., Whitfield, J., Magnusson, P., Saharinen, J., Perola, M., Silander, K., Isaacs, A., Sijbrands, E.J., Uitterlinden, A.G., Witteman, J.C., Oostra, B.A., Elliott, P., Ruokonen, A., Sabatti, C., Gieger, C., Meitinger, T., Kronenberg, F., Doring, A., Wichmann, H.E., Smit, J.H., McCarthy, M.I., van Duijn, C.M., Peltonen, L.: Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41(1), 47–55 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    Rudan, I., Marusic, A., Jankovic, S., Rotim, K., Boban, M., Lauc, G., Grkovic, I., Dogas, Z., Zemunik, T., Vatavuk, Z., Bencic, G., Rudan, D., Mulic, R., Krzelj, V., Terzic, J., Stojanovic, D., Puntaric, D., Bilic, E., Ropac, D., Vorko-Jovic, A., Znaor, A., Stevanovic, R., Biloglav, Z., Polasek, O.: 10001 Dalmatians: Croatia launches its national biobank. Croat. Med. J. 50(1), 4–6 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    Hirschhorn, J.N.: Genomewide association studies–illuminating biologic pathways. N. Engl. J. Med. 360(17), 1699–1701 (2009)PubMedCrossRefGoogle Scholar
  13. 13.
    Goldstein, D.B.: Common genetic variation and human traits. N. Engl. J. Med. 360(17), 1696–1698 (2009)PubMedCrossRefGoogle Scholar
  14. 14.
    Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W.: Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1), 123–134 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    Hassinen, A., Pujol, F.M., Kokkonen, N., Pieters, C., Kihlstrom, M., Korhonen, K., Kellokumpu, S.: Functional organization of golgi N- and O-Glycosylation pathways involves ph-dependent complex formation that is impaired in cancer cells. J. Biol. Chem. 286(44), 38329–38340 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    Rivinoja, A., Hassinen, A., Kokkonen, N., Kauppila, A., Kellokumpu, S.: Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J. Cell. Physiol. 220(1), 144–154 (2009)PubMedCrossRefGoogle Scholar
  17. 17.
    Kunkel, J.P., Jan, D.C., Jamieson, J.C., Butler, M.: Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J. Biotechnol. 62(1), 55–71 (1998)PubMedCrossRefGoogle Scholar
  18. 18.
    Jaenisch, R., Bird, A.: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33(Suppl), 245–254 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    Faulk, C., Dolinoy, D.C.: Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6(7), 791–797 (2011)PubMedCrossRefGoogle Scholar
  20. 20.
    Heijmans, B.T., Boer, J.M., Suchiman, H.E., Cornelisse, C.J., Westendorp, R.G., Kromhout, D., Feskens, E.J., Slagboom, P.E.: A common variant of the methylenetetrahydrofolatereductase gene (1p36) is associated with an increased risk of cancer. Cancer Res. 63(6), 1249–1253 (2003)PubMedGoogle Scholar
  21. 21.
    Heijmans, B.T., Tobi, E.W., Stein, A.D., Putter, H., Blauw, G.J., Susser, E.S., Slagboom, P.E., Lumey, L.H.: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. U.S.A. 105(44), 17046–17049 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    Barker, D.J., Eriksson, J.G., Forsen, T., Osmond, C.: Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31(6), 1235–1239 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    Tobi, E.W., Lumey, L.H., Talens, R.P., Kremer, D., Putter, H., Stein, A.D., Slagboom, P.E., Heijmans, B.T.: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18(21), 4046–4053 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    Herceg, Z., Vaissiere, T.: Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics 6(7), 804–819 (2011)PubMedCrossRefGoogle Scholar
  25. 25.
    Thayer, Z.M., Kuzawa, C.W.: Biological memories of past environments: epigenetic pathways to health disparities. Epigenetics 6(7), 798–803 (2011)PubMedCrossRefGoogle Scholar
  26. 26.
    Ling, C., Groop, L.: Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12), 2718–2725 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    Syrbe, U., Jennrich, S., Schottelius, A., Richter, A., Radbruch, A., Hamann, A.: Differential regulation of P-selectin ligand expression in naive versus memory CD4+ T cells: evidence for epigenetic regulation of involved glycosyltransferase genes. Blood 104(10), 3243–3248 (2004)PubMedCrossRefGoogle Scholar
  28. 28.
    Kawamura, Y.I., Toyota, M., Kawashima, R., Hagiwara, T., Suzuki, H., Imai, K., Shinomura, Y., Tokino, T., Kannagi, R., Dohi, T.: DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 135(1), 142–151 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    Ide, Y., Miyoshi, E., Nakagawa, T., Gu, J., Tanemura, M., Nishida, T., Ito, T., Yamamoto, H., Kozutsumi, Y., Taniguchi, N.: Aberrant expression of N-acetylglucosaminyltransferase-IVa and IVb (GnT-IVa and b) in pancreatic cancer. Biochem. Biophys. Res. Commun. 341(2), 478–482 (2006)PubMedCrossRefGoogle Scholar
  30. 30.
    Serpa, J., Mesquita, P., Mendes, N., Oliveira, C., Almeida, R., Santos-Silva, F., Reis, C.A., LePendu, J., David, L.: Expression of Lea in gastric cancer cell lines depends on FUT3 expression regulated by promoter methylation. Cancer Lett. 242(2), 191–197 (2006)PubMedCrossRefGoogle Scholar
  31. 31.
    Moriwaki, K., Narisada, M., Imai, T., Shinzaki, S., Miyoshi, E.: The effect of epigenetic regulation of fucosylation on TRAIL-induced apoptosis. Glycoconj. J. 27(7–9), 649–659 (2010)PubMedCrossRefGoogle Scholar
  32. 32.
    Zoldoš, V., Horvat, T., Novokmet, M., Cuenin, C., Mužinić, A., Pučić, M., Huffman, J.E., Gornik, O., Polašek, O., Campbell, H., Hayward, C., Wright, A.F., Rudan, I., Owen, K., McCarthy, M.I., Herceg, Z., Lauc, G.: Epigenetic silencing of HNF1A associates with changes in the composition of the human plasma N-glycome. Epigenetics 7(2), 164–172 (2012)PubMedCrossRefGoogle Scholar
  33. 33.
    Kaati, G., Bygren, L.O., Pembrey, M., Sjostrom, M.: Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15(7), 784–790 (2007)PubMedCrossRefGoogle Scholar
  34. 34.
    Franklin, T.B., Russig, H., Weiss, I.C., Graff, J., Linder, N., Michalon, A., Vizi, S., Mansuy, I.M.: Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68(5), 408–415 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    Yauk, C., Polyzos, A., Rowan-Carroll, A., Somers, C.M., Godschalk, R.W., Van Schooten, F.J., Berndt, M.L., Pogribny, I.P., Koturbash, I., Williams, A., Douglas, G.R., Kovalchuk, O.: Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc. Natl. Acad. Sci. U.S.A. 105(2), 605–610 (2008)PubMedCrossRefGoogle Scholar
  36. 36.
    Knežević, A., Polašek, O., Gornik, O., Rudan, I., Campbell, H., Hayward, C., Wright, A., Kolčić, I., O’Donoghue, N., Bones, J., Rudd, P.M., Lauc, G.: Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 8, 694–701 (2009)PubMedCrossRefGoogle Scholar
  37. 37.
    Lauc, G., Essafi, A., Huffman, J.E., Hayward, C., Knežević, A., Kattla, J.J., Polašek, O., Gornik, O., Vitart, V., Abrahams, J.L., Pučić, M., Novokmet, M., Redžić, I., Campbell, S., Wild, S.H., Borovečki, F., Wang, W., Kolčić, I., Zgaga, L., Gyllensten, U., Wilson, J.F., Wright, A.F., Hastie, N.D., Campbell, H., Rudd, P.M., Rudan, I.: Genomics meets glycomics—the first GWAS study of human N-glycome identifies HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet. 6(12), e1001256 (2010)PubMedCrossRefGoogle Scholar
  38. 38.
    Huffman, J.E., Knezevic, A., Vitart, V., Kattla, J., Adamczyk, B., Novokmet, M., Igl, W., Pucic, M., Zgaga, L., Johannson, A., Redzic, I., Gornik, O., Zemunik, T., Polasek, O., Kolcic, I., Pehlic, M., Koeleman, C.A., Campbell, S., Wild, S.H., Hastie, N.D., Campbell, H., Gyllensten, U., Wuhrer, M., Wilson, J.F., Hayward, C., Rudan, I., Rudd, P.M., Wright, A.F., Lauc, G.: Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within the human plasma N-glycome of 3533 European adults. Hum. Mol. Genet. 20(24), 5000–5011 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    Knežević, A., Gornik, O., Polašek, O., Pučić, M., Novokmet, M., Redžić, I., Rudd, P.M., Wright, A.F., Campbell, H., Rudan, I., Lauc, G.: Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 20(8), 959–969 (2010)PubMedCrossRefGoogle Scholar
  40. 40.
    Pucic, M., Knezevic, A., Vidic, J., Adamczyk, B., Novokmet, M., Polasek, O., Gornik, O., Supraha-Goreta, S., Wormald, M.R., Redzic, I., Campbell, H., Wright, A., Hastie, N.D., Wilson, J.F., Rudan, I., Wuhrer, M., Rudd, P.M., Josic, D., Lauc, G.: High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol. Cell. Proteomics 10(10), M111 010090 (2011)PubMedGoogle Scholar
  41. 41.
    Gornik, O., Pavic, T., Lauc, G.: Alternative glycosylation modulates function of IgG and other proteins—implications on evolution and disease. Biochim. Biophys. Acta. (2011). doi: 10.1016/j.bbagen.2011.12.004
  42. 42.
    Dennis, J.W., Lau, K.S., Demetriou, M., Nabi, I.R.: Adaptive regulation at the cell surface by N-glycosylation. Traffic 10(11), 1569–1578 (2009)PubMedCrossRefGoogle Scholar
  43. 43.
    Dennis, J.W., Nabi, I.R., Demetriou, M.: Metabolism, cell surface organization, and disease. Cell 139(7), 1229–1241 (2009)PubMedCrossRefGoogle Scholar
  44. 44.
    Park, C., Zhang, J.: Genome-wide evolutionary conservation of N-glycosylation sites. Mol. Biol. Evol. 28(8), 2351–2357 (2011)PubMedCrossRefGoogle Scholar
  45. 45.
    Kutalik, Z., Benyamin, B., Bergmann, S., Mooser, V., Waeber, G., Montgomery, G.W., Martin, N.G., Madden, P.A., Heath, A.C., Beckmann, J.S., Vollenweider, P., Marques-Vidal, P., Whitfield, J.B.: Genome-wide association study identifies two loci strongly affecting transferrin glycosylation. Hum. Mol. Genet. 20(18), 3710–3717 (2011)PubMedCrossRefGoogle Scholar
  46. 46.
    Mitsumoto, Y., Oka, S., Sakuma, H., Inazawa, J., Kawasaki, T.: Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope. Genomics 65(2), 166–173 (2000)PubMedCrossRefGoogle Scholar
  47. 47.
    Oka, S., Terayama, K., Kawashima, C., Kawasaki, T.: A novel glucuronyltransferase in nervous system presumably associated with the biosynthesis of HNK-1 carbohydrate epitope on glycoproteins. J. Biol. Chem. 267(32), 22711–22714 (1992)PubMedGoogle Scholar
  48. 48.
    Roxrud, I., Raiborg, C., Gilfillan, G.D., Stromme, P., Stenmark, H.: Dual degradation mechanisms ensure disposal of NHE6 mutant protein associated with neurological disease. Exp. Cell Res. 315(17), 3014–3027 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    Bos, P.D., Zhang, X.H., Nadal, C., Shu, W., Gomis, R.R., Nguyen, D.X., Minn, A.J., van de Vijver, M.J., Gerald, W.L., Foekens, J.A., Massague, J.: Genes that mediate breast cancer metastasis to the brain. Nature 459(7249), 1005–1009 (2009)PubMedCrossRefGoogle Scholar
  50. 50.
    Brynedal, B., Wojcik, J., Esposito, F., Debailleul, V., Yaouanq, J., Martinelli-Boneschi, F., Edan, G., Comi, G., Hillert, J., Abderrahim, H.: MGAT5 alters the severity of multiple sclerosis. J. Neuroimmunol. 220(1-2), 120–124 (2010)PubMedCrossRefGoogle Scholar
  51. 51.
    Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I.R., Wrana, J.L., Dennis, J.W.: Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693), 120–124 (2004)PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao, J., Patwa, T.H., Lubman, D.M., Simeone, D.M.: Protein biomarkers in cancer: natural glycoprotein microarray approaches. Curr. Opin. Mol. Ther. 10(6), 602–610 (2008)PubMedGoogle Scholar
  53. 53.
    Lebrilla, C.B., An, H.J.: The prospects of glycan biomarkers for the diagnosis of diseases. Mol. Biosyst. 5(1), 17–20 (2009)PubMedCrossRefGoogle Scholar
  54. 54.
    Reis, C.A., Osorio, H., Silva, L., Gomes, C., David, L.: Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63(4), 322–329 (2010)PubMedCrossRefGoogle Scholar
  55. 55.
    Lu, J.P., Knezevic, A., Wang, Y.X., Rudan, I., Campbell, H., Zou, Z.K., Lan, J., Lai, Q.X., Wu, J.J., He, Y., Song, M.S., Zhang, L., Lauc, G., Wang, W.: Screening novel biomarkers for metabolic syndrome by profiling human plasma N-glycans in Chinese Han and Croatian populations. J. Proteome Res. 10(11), 4959–4969 (2011)PubMedCrossRefGoogle Scholar
  56. 56.
    Ohtsubo, K., Chen, M.Z., Olefski, J.M., Marth, J.D.: Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat. Med. 17(9), 1067–1075 (2011)PubMedCrossRefGoogle Scholar
  57. 57.
    Kamatani, Y., Matsuda, K., Okada, Y., Kubo, M., Hosono, N., Daigo, Y., Nakamura, Y., Kamatani, N.: Genome-wide association study ofhematological and biochemical traits in a Japanese population. Nat. Genet. 42(3), 210–215 (2010)PubMedCrossRefGoogle Scholar
  58. 58.
    Yuan, X., Waterworth, D., Perry, J.R., Lim, N., Song, K., Chambers, J.C., Zhang, W., Vollenweider, P., Stirnadel, H., Johnson, T., Bergmann, S., Beckmann, N.D., Li, Y., Ferrucci, L., Melzer, D., Hernandez, D., Singleton, A., Scott, J., Elliott, P., Waeber, G., Cardon, L., Frayling, T.M., Kooner, J.S., Mooser, V.: Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83(4), 520–528 (2008)PubMedCrossRefGoogle Scholar
  59. 59.
    Chambers, J.C., Zhang, W., Sehmi, J., Li, X., Wass, M.N., Van der Harst, P., Holm, H., Sanna, S., Kavousi, M., Baumeister, S.E., Coin, L.J., Deng, G., Gieger, C., Heard-Costa, N.L., Hottenga, J.J., Kuhnel, B., Kumar, V., Lagou, V., Liang, L., Luan, J., Vidal, P.M., Mateo Leach, I., O’Reilly, P.F., Peden, J.F., Rahmioglu, N., Soininen, P., Speliotes, E.K., Yuan, X., Thorleifsson, G., Alizadeh, B.Z., Atwood, L.D., Borecki, I.B., Brown, M.J., Charoen, P., Cucca, F., Das, D., de Geus, E.J., Dixon, A.L., Doring, A., Ehret, G., Eyjolfsson, G.I., Farrall, M., Forouhi, N.G., Friedrich, N., Goessling, W., Gudbjartsson, D.F., Harris, T.B., Hartikainen, A.L., Heath, S., Hirschfield, G.M., Hofman, A., Homuth, G., Hypponen, E., Janssen, H.L., Johnson, T., Kangas, A.J., Kema, I.P., Kuhn, J.P., Lai, S., Lathrop, M., Lerch, M.M., Li, Y., Liang, T.J., Lin, J.P., Loos, R.J., Martin, N.G., Moffatt, M.F., Montgomery, G.W., Munroe, P.B., Musunuru, K., Nakamura, Y., O’Donnell, C.J., Olafsson, I., Penninx, B.W., Pouta, A., Prins, B.P., Prokopenko, I., Puls, R., Ruokonen, A., Savolainen, M.J., Schlessinger, D., Schouten, J.N., Seedorf, U., Sen-Chowdhry, S., Siminovitch, K.A., Smit, J.H., Spector, T.D., Tan, W., Teslovich, T.M., Tukiainen, T., Uitterlinden, A.G., Van der Klauw, M.M., Vasan, R.S., Wallace, C., Wallaschofski, H., Wichmann, H.E., Willemsen, G., Wurtz, P., Xu, C., Yerges-Armstrong, L.M., Abecasis, G.R., Ahmadi, K.R., Boomsma, D.I., Caulfield, M., Cookson, W.O., van Duijn, C.M., Froguel, P., Matsuda, K., McCarthy, M.I., Meisinger, C., Mooser, V., Pietilainen, K.H., Schumann, G., Snieder, H., Sternberg, M.J., Stolk, R.P., Thomas, H.C., Thorsteinsdottir, U., Uda, M., Waeber, G., Wareham, N.J., Waterworth, D.M., Watkins, H., Whitfield, J.B., Witteman, J.C., Wolffenbuttel, B.H., Fox, C.S., Ala-Korpela, M., Stefansson, K., Vollenweider, P., Volzke, H., Schadt, E.E., Scott, J., Jarvelin, M.R., Elliott, P., Kooner, J.S.: Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43(11), 1131–1138 (2011)PubMedCrossRefGoogle Scholar
  60. 60.
    Chung, C.M., Wang, R.Y., Chen, J.W., Fann, C.S., Leu, H.B., Ho, H.Y., Ting, C.T., Lin, T.H., Sheu, S.H., Tsai, W.C., Chen, J.H., Jong, Y.S., Lin, S.J., Chen, Y.T., Pan, W.H.: A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor. Pharmacogenomics J. 10(6), 537–544 (2010)PubMedCrossRefGoogle Scholar
  61. 61.
    Teupser, D., Baber, R., Ceglarek, U., Scholz, M., Illig, T., Gieger, C., Holdt, L.M., Leichtle, A., Greiser, K.H., Huster, D., Linsel-Nitschke, P., Schafer, A., Braund, P.S., Tiret, L., Stark, K., Raaz-Schrauder, D., Fiedler, G.M., Wilfert, W., Beutner, F., Gielen, S., Grosshennig, A., Konig, I.R., Lichtner, P., Heid, I.M., Kluttig, A., El Mokhtari, N.E., Rubin, D., Ekici, A.B., Reis, A., Garlichs, C.D., Hall, A.S., Matthes, G., Wittekind, C., Hengstenberg, C., Cambien, F., Schreiber, S., Werdan, K., Meitinger, T., Loeffler, M., Samani, N.J., Erdmann, J., Wichmann, H.E., Schunkert, H., Thiery, J.: Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ. Cardiovasc. Genet. 3(4), 331–339 (2010)PubMedCrossRefGoogle Scholar
  62. 62.
    Qi, L., Cornelis, M.C., Kraft, P., Jensen, M., van Dam, R.M., Sun, Q., Girman, C.J., Laurie, C.C., Mirel, D.B., Hunter, D.J., Rimm, E., Hu, F.B.: Genetic variants in ABO blood group region, plasma soluble E-selectin levels and risk of type 2 diabetes. Hum. Mol. Genet. 19(9), 1856–1862 (2010)PubMedCrossRefGoogle Scholar
  63. 63.
    Paterson, A.D., Lopes-Virella, M.F., Waggott, D., Boright, A.P., Hosseini, S.M., Carter, R.E., Shen, E., Mirea, L., Bharaj, B., Sun, L., Bull, S.B.: Genome-wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin. Arterioscler. Thromb. Vasc. Biol. 29(11), 1958–1967 (2009)PubMedCrossRefGoogle Scholar
  64. 64.
    Barbalic, M., Dupuis, J., Dehghan, A., Bis, J.C., Hoogeveen, R.C., Schnabel, R.B., Nambi, V., Bretler, M., Smith, N.L., Peters, A., Lu, C., Tracy, R.P., Aleksic, N., Heeriga, J., Keaney Jr., J.F., Rice, K., Lip, G.Y., Vasan, R.S., Glazer, N.L., Larson, M.G., Uitterlinden, A.G., Yamamoto, J., Durda, P., Haritunians, T., Psaty, B.M., Boerwinkle, E., Hofman, A., Koenig, W., Jenny, N.S., Witteman, J.C., Ballantyne, C., Benjamin, E.J.: Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. Hum. Mol. Genet. 19(9), 1863–1872 (2010)PubMedCrossRefGoogle Scholar
  65. 65.
    Pare, G., Chasman, D.I., Kellogg, M., Zee, R.Y., Rifai, N., Badola, S., Miletich, J.P., Ridker, P.M.: Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women. PLoS Genet. 4(7), e1000118 (2008)PubMedCrossRefGoogle Scholar
  66. 66.
    Melzer, D., Perry, J.R., Hernandez, D., Corsi, A.M., Stevens, K., Rafferty, I., Lauretani, F., Murray, A., Gibbs, J.R., Paolisso, G., Rafiq, S., Simon-Sanchez, J., Lango, H., Scholz, S., Weedon, M.N., Arepalli, S., Rice, N., Washecka, N., Hurst, A., Britton, A., Henley, W., van de Leemput, J., Li, R., Newman, A.B., Tranah, G., Harris, T., Panicker, V., Dayan, C., Bennett, A., McCarthy, M.I., Ruokonen, A., Jarvelin, M.R., Guralnik, J., Bandinelli, S., Frayling, T.M., Singleton, A., Ferrucci, L.: A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4(5), e1000072 (2008)PubMedCrossRefGoogle Scholar
  67. 67.
    Tregouet, D.A., Heath, S., Saut, N., Biron-Andreani, C., Schved, J.F., Pernod, G., Galan, P., Drouet, L., Zelenika, D., Juhan-Vague, I., Alessi, M.C., Tiret, L., Lathrop, M., Emmerich, J., Morange, P.E.: Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach. Blood 113(21), 5298–5303 (2009)PubMedCrossRefGoogle Scholar
  68. 68.
    Johansson, A., Marroni, F., Hayward, C., Franklin, C.S., Kirichenko, A.V., Jonasson, I., Hicks, A.A., Vitart, V., Isaacs, A., Axenovich, T., Campbell, S., Floyd, J., Hastie, N., Knott, S., Lauc, G., Pichler, I., Rotim, K., Wild, S.H., Zorkoltseva, I.V., Wilson, J.F., Rudan, I., Campbell, H., Pattaro, C., Pramstaller, P., Oostra, B.A., Wright, A.F., van Duijn, C.M., Aulchenko, Y.S., Gyllensten, U.: Linkage and genome-wide association analysis of obesity-related phenotypes: association of weight with the MGAT1 gene. Obesity (Silver Spring) 18(4), 803–808 (2010)CrossRefGoogle Scholar
  69. 69.
    Daly, A.K., Donaldson, P.T., Bhatnagar, P., Shen, Y., Pe’er, I., Floratos, A., Daly, M.J., Goldstein, D.B., John, S., Nelson, M.R., Graham, J., Park, B.K., Dillon, J.F., Bernal, W., Cordell, H.J., Pirmohamed, M., Aithal, G.P., Day, C.P.: HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41(7), 816–819 (2009)PubMedCrossRefGoogle Scholar
  70. 70.
    Franke, A., McGovern, D.P., Barrett, J.C., Wang, K., Radford-Smith, G.L., Ahmad, T., Lees, C.W., Balschun, T., Lee, J., Roberts, R., Anderson, C.A., Bis, J.C., Bumpstead, S., Ellinghaus, D., Festen, E.M., Georges, M., Green, T., Haritunians, T., Jostins, L., Latiano, A., Mathew, C.G., Montgomery, G.W., Prescott, N.J., Raychaudhuri, S., Rotter, J.I., Schumm, P., Sharma, Y., Simms, L.A., Taylor, K.D., Whiteman, D., Wijmenga, C., Baldassano, R.N., Barclay, M., Bayless, T.M., Brand, S., Buning, C., Cohen, A., Colombel, J.F., Cottone, M., Stronati, L., Denson, T., De Vos, M., D’Inca, R., Dubinsky, M., Edwards, C., Florin, T., Franchimont, D., Gearry, R., Glas, J., Van Gossum, A., Guthery, S.L., Halfvarson, J., Verspaget, H.W., Hugot, J.P., Karban, A., Laukens, D., Lawrance, I., Lemann, M., Levine, A., Libioulle, C., Louis, E., Mowat, C., Newman, W., Panes, J., Phillips, A., Proctor, D.D., Regueiro, M., Russell, R., Rutgeerts, P., Sanderson, J., Sans, M., Seibold, F., Steinhart, A.H., Stokkers, P.C., Torkvist, L., Kullak-Ublick, G., Wilson, D., Walters, T., Targan, S.R., Brant, S.R., Rioux, J.D., D’Amato, M., Weersma, R.K., Kugathasan, S., Griffiths, A.M., Mansfield, J.C., Vermeire, S., Duerr, R.H., Silverberg, M.S., Satsangi, J., Schreiber, S., Cho, J.H., Annese, V., Hakonarson, H., Daly, M.J., Parkes, M.: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42(12), 1118–1125 (2010)PubMedCrossRefGoogle Scholar
  71. 71.
    McGovern, D.P., Jones, M.R., Taylor, K.D., Marciante, K., Yan, X., Dubinsky, M., Ippoliti, A., Vasiliauskas, E., Berel, D., Derkowski, C., Dutridge, D., Fleshner, P., Shih, D.Q., Melmed, G., Mengesha, E., King, L., Pressman, S., Haritunians, T., Guo, X., Targan, S.R., Rotter, J.I.: Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum. Mol. Genet. 19(17), 3468–3476 (2010)PubMedCrossRefGoogle Scholar
  72. 72.
    Tanaka, T., Scheet, P., Giusti, B., Bandinelli, S., Piras, M.G., Usala, G., Lai, S., Mulas, A., Corsi, A.M., Vestrini, A., Sofi, F., Gori, A.M., Abbate, R., Guralnik, J., Singleton, A., Abecasis, G.R., Schlessinger, D., Uda, M., Ferrucci, L.: Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet. 84(4), 477–482 (2009)PubMedCrossRefGoogle Scholar
  73. 73.
    Hazra, A., Kraft, P., Selhub, J., Giovannucci, E.L., Thomas, G., Hoover, R.N., Chanock, S.J., Hunter, D.J.: Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 40(10), 1160–1162 (2008)PubMedCrossRefGoogle Scholar
  74. 74.
    Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., Clarke, R., Heath, S.C., Timpson, N.J., Najjar, S.S., Stringham, H.M., Strait, J., Duren, W.L., Maschio, A., Busonero, F., Mulas, A., Albai, G., Swift, A.J., Morken, M.A., Narisu, N., Bennett, D., Parish, S., Shen, H., Galan, P., Meneton, P., Hercberg, S., Zelenika, D., Chen, W.M., Li, Y., Scott, L.J., Scheet, P.A., Sundvall, J., Watanabe, R.M., Nagaraja, R., Ebrahim, S., Lawlor, D.A., Ben-Shlomo, Y., Davey-Smith, G., Shuldiner, A.R., Collins, R., Bergman, R.N., Uda, M., Tuomilehto, J., Cao, A., Collins, F.S., Lakatta, E., Lathrop, G.M., Boehnke, M., Schlessinger, D., Mohlke, K.L., Abecasis, G.R.: Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40(2), 161–169 (2008)PubMedCrossRefGoogle Scholar
  75. 75.
    Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N.P., Rieder, M.J., Cooper, G.M., Roos, C., Voight, B.F., Havulinna, A.S., Wahlstrand, B., Hedner, T., Corella, D., Tai, E.S., Ordovas, J.M., Berglund, G., Vartiainen, E., Jousilahti, P., Hedblad, B., Taskinen, M.R., Newton-Cheh, C., Salomaa, V., Peltonen, L., Groop, L., Altshuler, D.M., Orho-Melander, M.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2), 189–197 (2008)PubMedCrossRefGoogle Scholar
  76. 76.
    Waterworth, D.M., Ricketts, S.L., Song, K., Chen, L., Zhao, J.H., Ripatti, S., Aulchenko, Y.S., Zhang, W., Yuan, X., Lim, N., Luan, J., Ashford, S., Wheeler, E., Young, E.H., Hadley, D., Thompson, J.R., Braund, P.S., Johnson, T., Struchalin, M., Surakka, I., Luben, R., Khaw, K.T., Rodwell, S.A., Loos, R.J., Boekholdt, S.M., Inouye, M., Deloukas, P., Elliott, P., Schlessinger, D., Sanna, S., Scuteri, A., Jackson, A., Mohlke, K.L., Tuomilehto, J., Roberts, R., Stewart, A., Kesaniemi, Y.A., Mahley, R.W., Grundy, S.M., McArdle, W., Cardon, L., Waeber, G., Vollenweider, P., Chambers, J.C., Boehnke, M., Abecasis, G.R., Salomaa, V., Jarvelin, M.R., Ruokonen, A., Barroso, I., Epstein, S.E., Hakonarson, H.H., Rader, D.J., Reilly, M.P., Witteman, J.C., Hall, A.S., Samani, N.J., Strachan, D.P., Barter, P., van Duijn, C.M., Kooner, J.S., Peltonen, L., Wareham, N.J., McPherson, R., Mooser, V., Sandhu, M.S.: Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 30(11), 2264–2276 (2010)PubMedCrossRefGoogle Scholar
  77. 77.
    Reveille, J.D., Sims, A.M., Danoy, P., Evans, D.M., Leo, P., Pointon, J.J., Jin, R., Zhou, X., Bradbury, L.A., Appleton, L.H., Davis, J.C., Diekman, L., Doan, T., Dowling, A., Duan, R., Duncan, E.L., Farrar, C., Hadler, J., Harvey, D., Karaderi, T., Mogg, R., Pomeroy, E., Pryce, K., Taylor, J., Savage, L., Deloukas, P., Kumanduri, V., Peltonen, L., Ring, S.M., Whittaker, P., Glazov, E., Thomas, G.P., Maksymowych, W.P., Inman, R.D., Ward, M.M., Stone, M.A., Weisman, M.H., Wordsworth, B.P., Brown, M.A.: Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42(2), 123–127 (2010)PubMedCrossRefGoogle Scholar
  78. 78.
    Schaefer, A.S., Richter, G.M., Nothnagel, M., Manke, T., Dommisch, H., Jacobs, G., Arlt, A., Rosenstiel, P., Noack, B., Groessner-Schreiber, B., Jepsen, S., Loos, B.G., Schreiber, S.: A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum. Mol. Genet. 19(3), 553–562 (2010)PubMedCrossRefGoogle Scholar
  79. 79.
    Gudbjartsson, D.F., Walters, G.B., Thorleifsson, G., Stefansson, H., Halldorsson, B.V., Zusmanovich, P., Sulem, P., Thorlacius, S., Gylfason, A., Steinberg, S., Helgadottir, A., Ingason, A., Steinthorsdottir, V., Olafsdottir, E.J., Olafsdottir, G.H., Jonsson, T., Borch-Johnsen, K., Hansen, T., Andersen, G., Jorgensen, T., Pedersen, O., Aben, K.K., Witjes, J.A., Swinkels, D.W., den Heijer, M., Franke, B., Verbeek, A.L., Becker, D.M., Yanek, L.R., Becker, L.C., Tryggvadottir, L., Rafnar, T., Gulcher, J., Kiemeney, L.A., Kong, A., Thorsteinsdottir, U., Stefansson, K.: Many sequence variants affecting diversity of adult human height. Nat. Genet. 40(5), 609–615 (2008)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Zagreb, Faculty of ScienceZagrebCroatia
  2. 2.Genos Ltd, Glycobiology LaboratoryZagrebCroatia
  3. 3.University of Zagreb, Faculty of Pharmacy and BiochemistryZagrebCroatia

Personalised recommendations