Glycoconjugate Journal

, Volume 29, Issue 8–9, pp 599–607 | Cite as

Potential roles of N-glycosylation in cell adhesion

  • Jianguo Gu
  • Tomoya Isaji
  • Qingsong Xu
  • Yoshinobu Kariya
  • Wei Gu
  • Tomohiko Fukuda
  • Yuguang Du


The functional units of cell adhesion are typically multiprotein complexes made up of three general classes of proteins; the adhesion receptors, the cell-extracellular matrix (ECM) proteins, and the cytoplasmic plaque/peripheral membrane proteins. The cell adhesion receptors are usually transmembrane glycoproteins (for example E-cadherin and integrin) that mediate binding at the extracellular surface and determine the specificity of cell-cell and cell-ECM recognition. E-cadherin-mediated cell-cell adhesion can be both temporally and spatially regulated during development, and represents a key step in the acquisition of the invasive phenotype for many tumors. On the other hand, integrin-mediated cell-ECM interactions play important roles in cytoskeleton organization and in the transduction of intracellular signals to regulate various processes such as proliferation, differentiation and cell migration. ECM proteins are typically large glycoproteins, including the collagens, fibronectins, laminins, and proteoglycans that assemble into fibrils or other complex macromolecular arrays. The most of these adhesive proteins are glycosylated. Here, we focus mainly on the modification of N-glycans of integrins and laminin-332, and a mutual regulation between cell adhesion and bisected N-glycan expression, to address the important roles of N-glycans in cell adhesion.


Bisected N-glycan Cell adhesion E-cadherin N-glycosylation Integrin 



This work was partly supported by a Grant-in-Aid for Scientific Research NO. 21370059 (JG), for Challenging Exploratory Research No. 23651196 (JG) from the Japan Society for the Promotion of Science and by the Academic Frontier Project for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and Mizutani Foundation for Glycoscience (JG).


  1. 1.
    Gumbiner, B.M.: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3), 345–357 (1996)PubMedCrossRefGoogle Scholar
  2. 2.
    Dennis, J.W., Laferte, S., Waghorne, C., Breitman, M.L., Kerbel, R.S.: Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236(4801), 582–585 (1987)PubMedCrossRefGoogle Scholar
  3. 3.
    Hakomori, S.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56(23), 5309–5318 (1996)PubMedGoogle Scholar
  4. 4.
    Asada, M., Furukawa, K., Segawa, K., Endo, T., Kobata, A.: Increased expression of highly branched N-glycans at cell surface is correlated with the malignant phenotypes of mouse tumor cells. Cancer Res. 57(6), 1073–1080 (1997)PubMedGoogle Scholar
  5. 5.
    Thiery, J.P.: Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15(6), 740–746 (2003)PubMedCrossRefGoogle Scholar
  6. 6.
    Gu, J., Nishikawa, A., Tsuruoka, N., Ohno, M., Yamaguchi, N., Kangawa, K., Taniguchi, N.: Purification and characterization of UDP-N-acetylglucosamine: alpha-6-D-mannoside beta 1-6 N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J. Biochem. (Tokyo) 113(5), 614–619 (1993)Google Scholar
  7. 7.
    Schachter, H.: Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Adv. Exp. Med. Biol. 205, 53–85 (1986)PubMedGoogle Scholar
  8. 8.
    Schachter, H., Narasimhan, S., Gleeson, P., Vella, G.: Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can. J. Biochem. Cell. Biol. 61(9), 1049–1066 (1983)PubMedCrossRefGoogle Scholar
  9. 9.
    Kariya, Y., Gu, J.: N-glycosylation of ss4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6(11), e27084.Google Scholar
  10. 10.
    Dennis, J.W., Lau, K.S., Demetriou, M., Nabi, I.R.: Adaptive regulation at the cell surface by N-glycosylation. Traffic 10(11), 1569–1578 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    Pochec, E., Litynska, A., Amoresano, A., Casbarra, A.: Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochim. Biophys. Acta 7, 1–3 (2003)Google Scholar
  12. 12.
    Granovsky, M., Fata, J., Pawling, J., Muller, W.J., Khokha, R., Dennis, J.W.: Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6(3), 306–312 (2000)PubMedCrossRefGoogle Scholar
  13. 13.
    Priatel, J.J., Sarkar, M., Schachter, H., Marth, J.D.: Isolation, characterization and inactivation of the mouse Mgat3 gene: the bisecting N-acetylglucosamine in asparagine-linked oligosaccharides appears dispensable for viability and reproduction. Glycobiology 7(1), 45–56 (1997)PubMedCrossRefGoogle Scholar
  14. 14.
    Bhattacharyya, R., Bhaumik, M., Raju, T.S., Stanley, P.: Truncated, inactive N-acetylglucosaminyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII. J. Biol. Chem. 277(29), 26300–26309 (2002)PubMedCrossRefGoogle Scholar
  15. 15.
    Bhaumik, M., Harris, T., Sundaram, S., Johnson, L., Guttenplan, J., Rogler, C., Stanley, P.: Progression of hepatic neoplasms is severely retarded in mice lacking the bisecting N-acetylglucosamine on N-glycans: evidence for a glycoprotein factor that facilitates hepatic tumor progression. Cancer Res. 58(13), 2881–2887 (1998)PubMedGoogle Scholar
  16. 16.
    Yang, X., Bhaumik, M., Bhattacharyya, R., Gong, S., Rogler, C.E., Stanley, P.: New evidence for an extra-hepatic role of N-acetylglucosaminyltransferase III in the progression of diethylnitrosamine-induced liver tumors in mice. Cancer Res. 60(12), 3313–3319 (2000)PubMedGoogle Scholar
  17. 17.
    Gu, J., Taniguchi, N.: Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell. Adh. Migr. 2(4), 243–245 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    Guo, H.B., Lee, I., Kamar, M., Akiyama, S.K., Pierce, M.: Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration. Cancer Res. 62(23), 6837–6845 (2002)PubMedGoogle Scholar
  19. 19.
    Sato, Y., Isaji, T., Tajiri, M., Yoshida-Yamamoto, S., Yoshinaka, T., Somehara, T., Fukuda, T., Wada, Y., Gu, J.: An N-glycosylation site on the beta-propeller domain of the integrin alpha5 subunit plays key roles in both its function and site-specific modification by beta1,4-N-acetylglucosaminyltransferase III. J. Biol. Chem. 284(18), 11873–11881 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    Isaji, T., Gu, J., Nishiuchi, R., Zhao, Y., Takahashi, M., Miyoshi, E., Honke, K., Sekiguchi, K., Taniguchi, N.: Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J. Biol. Chem. 279(19), 19747–19754 (2004)PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao, Y., Nakagawa, T., Itoh, S., Inamori, K., Isaji, T., Kariya, Y., Kondo, A., Miyoshi, E., Miyazaki, K., Kawasaki, N., Taniguchi, N., Gu, J.: N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J. Biol. Chem. 281(43), 32122–32130 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    Shigeta, M., Shibukawa, Y., Ihara, H., Miyoshi, E., Taniguchi, N., Gu, J.: beta1,4-N-Acetylglucosaminyltransferase III potentiates beta1 integrin-mediated neuritogenesis induced by serum deprivation in Neuro2a cells. Glycobiology 16(6), 564–571 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Kariya, Y., Kawamura, C., Tabei, T., Gu, J.: Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J Biol Chem 285(5), 3330–3340 (2010)Google Scholar
  24. 24.
    Hakomori, S.I.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim. Biophys. Acta 1780(3), 325–346 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    Si, H.: S.I.: Inaugural Article: The glycosynapse. Proc. Natl. Acad. Sci. U. S. A. 99(1), 225–232 (2002)CrossRefGoogle Scholar
  26. 26.
    Taniguchi, N., Miyoshi, E., Gu, J., Honke, K., Matsumoto, A.: Decoding sugar functions by identifying target glycoproteins. Curr. Opin. Struct. Biol. 16(5), 561–566 (2006)PubMedCrossRefGoogle Scholar
  27. 27.
    Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I.R., Wrana, J.L., Dennis, J.W.: Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693), 120–124 (2004)PubMedCrossRefGoogle Scholar
  28. 28.
    Rebbaa, A., Yamamoto, H., Saito, T., Meuillet, E., Kim, P., Kersey, D.S., Bremer, E.G., Taniguchi, N., Moskal, J.R.: Gene transfection-mediated overexpression of beta1,4-N-acetylglucosamine bisecting oligosaccharides in glioma cell line U373 MG inhibits epidermal growth factor receptor function. J. Biol. Chem. 272(14), 9275–9279 (1997)PubMedCrossRefGoogle Scholar
  29. 29.
    Gu, J., Zhao, Y., Isaji, T., Shibukawa, Y., Ihara, H., Takahashi, M., Ikeda, Y., Miyoshi, E., Honke, K., Taniguchi, N.: Beta1,4-N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells. Glycobiology 14(2), 177–186 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    Isaji, T., Sato, Y., Zhao, Y., Miyoshi, E., Wada, Y., Taniguchi, N., Gu, J.: N-glycosylation of the beta-propeller domain of the integrin alpha5 subunit is essential for alpha5beta1 heterodimerization, expression on the cell surface, and its biological function. J. Biol. Chem. 281(44), 33258–33267 (2006)PubMedCrossRefGoogle Scholar
  31. 31.
    Seales, E.C., Shaikh, F.M., Woodard-Grice, A.V., Aggarwal, P., McBrayer, A.C., Hennessy, K.M., Bellis, S.L.: A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation. J. Biol. Chem. 280(45), 37610–37615 (2005)PubMedCrossRefGoogle Scholar
  32. 32.
    Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., Arnaout, M.A.: Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296(5565), 151–155 (2002)PubMedCrossRefGoogle Scholar
  33. 33.
    Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., Arnaout, M.A.: Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294(5541), 339–345 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    Mould, A.P., Symonds, E.J., Buckley, P.A., Grossmann, J.G., McEwan, P.A., Barton, S.J., Askari, J.A., Craig, S.E., Bella, J., Humphries, M.J.: Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J. Biol. Chem. 278(41), 39993–39999 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    Manya, H., Chiba, A., Yoshida, A., Wang, X., Chiba, Y., Jigami, Y., Margolis, R.U., Endo, T.: Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U. S. A. 101(2), 500–505 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    Ju, T., Cummings, R.D.: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl. Acad. Sci. U. S. A. 99(26), 16613–16618 (2002)PubMedCrossRefGoogle Scholar
  37. 37.
    Sasai, K., Ikeda, Y., Ihara, H., Honke, K., Taniguchi, N.: Caveolin-1 regulates the functional localization of N-acetylglucosaminyltransferase III within the golgi apparatus. J. Biol. Chem. 278(28), 25295–25301 (2003)PubMedCrossRefGoogle Scholar
  38. 38.
    Isaji, T., Sato, Y., Fukuda, T., Gu, J.: N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J. Biol. Chem. 284(18), 12207–12216 (2009)PubMedCrossRefGoogle Scholar
  39. 39.
    Hoffmeister, K.M., Josefsson, E.C., Isaac, N.A., Clausen, H., Hartwig, J.H., Stossel, T.P.: Glycosylation restores survival of chilled blood platelets. Science 301(5639), 1531–1534 (2003)PubMedCrossRefGoogle Scholar
  40. 40.
    Josefsson, E.C., Gebhard, H.H., Stossel, T.P., Hartwig, J.H., Hoffmeister, K.M.: The macrophage alphaMbeta2 integrin alphaM lectin domain mediates the phagocytosis of chilled platelets. J. Biol. Chem. 280(18), 18025–18032 (2005)PubMedCrossRefGoogle Scholar
  41. 41.
    Colognato, H., Yurchenco, P.D.: Form and function: the laminin family of heterotrimers. Dev. Dyn. 218(2), 213–234 (2000)PubMedCrossRefGoogle Scholar
  42. 42.
    Kariya, Y., Kariya, Y., Gu, J.: Roles of laminin-332 and alpha6beta4 integrin in tumor progression. Mini. Rev. Med. Chem. 9(11), 1284–1291 (2009)PubMedCrossRefGoogle Scholar
  43. 43.
    Kariya, Y., Kato, R., Itoh, S., Fukuda, T., Shibukawa, Y., Sanzen, N., Sekiguchi, K., Wada, Y., Kawasaki, N., Gu, J.: N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. J. Biol. Chem. 283(48), 33036–33045 (2008)PubMedCrossRefGoogle Scholar
  44. 44.
    Crocker, P.R., Varki, A.: Siglecs in the immune system. Immunology 103(2), 137–145 (2001)PubMedCrossRefGoogle Scholar
  45. 45.
    Ono, M., Handa, K., Withers, D.A., Hakomori, S.: Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem. Biophys. Res. Commun. 279(3), 744–750 (2000)PubMedCrossRefGoogle Scholar
  46. 46.
    Gumbiner, B.M.: Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6(8), 622–634 (2005)PubMedCrossRefGoogle Scholar
  47. 47.
    Takeichi, M.: Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59, 237–252 (1990)PubMedCrossRefGoogle Scholar
  48. 48.
    Vernon, A.E., LaBonne, C.: Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr. Biol. 14(17), R719–R721 (2004)PubMedCrossRefGoogle Scholar
  49. 49.
    Lickert, H., Bauer, A., Kemler, R., Stappert, J.: Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J. Biol. Chem. 275(7), 5090–5095 (2000)PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu, W., Leber, B., Andrews, D.W.: Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J. 20(21), 5999–6007 (2001)PubMedCrossRefGoogle Scholar
  51. 51.
    Liwosz, A., Lei, T., Kukuruzinska, M.A.: N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 281(32), 23138–23149 (2006)PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou, F., Su, J., Fu, L., Yang, Y., Zhang, L., Wang, L., Zhao, H., Zhang, D., Li, Z., Zha, X.: Unglycosylation at Asn-633 made extracellular domain of E-cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially degraded by ERAD. Glycoconj J (2008).Google Scholar
  53. 53.
    Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S., Taniguchi, N.: Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc. Natl. Acad. Sci. U. S. A. 92(19), 8754–8758 (1995)PubMedCrossRefGoogle Scholar
  54. 54.
    Yoshimura, M., Ihara, Y., Matsuzawa, Y., Taniguchi, N.: Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J. Biol. Chem. 271(23), 13811–13815 (1996)PubMedCrossRefGoogle Scholar
  55. 55.
    Gu, J., Sato, Y., Kariya, Y., Isaji, T., Taniguchi, N., Fukuda, T.: A mutual regulation between cell-cell adhesion and N-glycosylation: implication of the bisecting GlcNAc for biological functions. J. Proteome. Res. 8(2), 431–435 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    Iijima, J., Zhao, Y., Isaji, T., Kameyama, A., Nakaya, S., Wang, X., Ihara, H., Cheng, X., Nakagawa, T., Miyoshi, E., Kondo, A., Narimatsu, H., Taniguchi, N., Gu, J.: Cell-cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells. Involvement of E-cadherin-mediated cell adhesion. J. Biol. Chem. 281(19), 13038–13046 (2006)PubMedCrossRefGoogle Scholar
  57. 57.
    Akama, R., Sato, Y., Kariya, Y., Isaji, T., Fukuda, T., Lu, L., Taniguchi, N., Ozawa, M., Gu, J.: N-acetylglucosaminyltransferase III expression is regulated by cell-cell adhesion via the E-cadherin-catenin-actin complex. Proteomics 8(16), 3221–3228 (2008)PubMedCrossRefGoogle Scholar
  58. 58.
    Wieser, R.J., Baumann, C.E., Oesch, F.: Cell-contact mediated modulation of the sialylation of contactinhibin. Glycoconj. J. 12(5), 672–679 (1995)PubMedCrossRefGoogle Scholar
  59. 59.
    Xu, Q., Akama, R., Isaji, T., Lu, Y., Hashimoto, H., Kariya, Y., Fukuda, T., Du, Y., Gu, J.: Wnt/beta-catenin signaling down-regulates N-acetylglucosaminyltransferase III expression: the implications of two mutually exclusive pathways for regulation. J Biol Chem 286(6), 4310–4318 (2011)Google Scholar
  60. 60.
    Moustakas, A., Heldin, C.H.: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer. Sci. 98(10), 1512–1520 (2007)PubMedCrossRefGoogle Scholar
  61. 61.
    Xu, Q., Isaji, T., Lu, Y., Gu, W., Kondo, M., Fukuda, T., Du, Y., Gu, J.: Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by TGF-β1 in epithelial cell lines. J Biol Chem. (2012) Mar 26. doi: 10.1074/jbc.M111.262154
  62. 62.
    Kim, Y., Kugler, M.C., Wei, Y., Kim, K.K., Li, X., Brumwell, A.N., Chapman, H.A.: Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J. Cell. Biol. 184(2), 309–322 (2009)PubMedCrossRefGoogle Scholar
  63. 63.
    Kim, K.K., Wei, Y., Szekeres, C., Kugler, M.C., Wolters, P.J., Hill, M.L., Frank, J.A., Brumwell, A.N., Wheeler, S.E., Kreidberg, J.A., Chapman, H.A.: Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J. Clin. Invest. 119(1), 213–224 (2009)PubMedCrossRefGoogle Scholar
  64. 64.
    Pinho, S.S., Osorio, H., Nita-Lazar, M., Gomes, J., Lopes, C., Gartner, F., Reis, C.A.: Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem. Biophys. Res. Commun. 379(4), 1091–1096 (2009)PubMedCrossRefGoogle Scholar
  65. 65.
    Terao, M., Ishikawa, A., Nakahara, S., Kimura, A., Kato, A., Moriwaki, K., Kamada, Y., Murota, H., Taniguchi, N., Katayama, I., Miyoshi, E.: Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J Biol Chem 286(32), 28303–28311 (2011)Google Scholar
  66. 66.
    Stanley, P.: Biological consequences of overexpressing or eliminating N-acetylglucosaminyltransferase-TIII in the mouse. Biochim. Biophys. Acta 1573(3), 363–368 (2002)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jianguo Gu
    • 1
  • Tomoya Isaji
    • 1
  • Qingsong Xu
    • 1
    • 2
  • Yoshinobu Kariya
    • 1
    • 3
  • Wei Gu
    • 1
  • Tomohiko Fukuda
    • 1
  • Yuguang Du
    • 2
  1. 1.Division of Regulatory GlycobiologyTohoku Pharmaceutical UniversitySendaiJapan
  2. 2.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  3. 3.Department of BiochemistryFukushima Medical University School of MedicineFukushimaJapan

Personalised recommendations