Glycoconjugate Journal

, Volume 28, Issue 3–4, pp 165–182 | Cite as

Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera

  • Andrew D. Cox
  • Frank St. Michael
  • Chantelle M. Cairns
  • Suzanne Lacelle
  • Amy Lea Filion
  • Dhamodharan Neelamegan
  • Cory Q. Wenzel
  • Heather Horan
  • James C. Richards


We investigated the conservation and antibody accessibility of inner core epitopes of Moraxella catarrhalis lipopolysaccharide (LPS) in order to assess their potential as vaccine candidates. Two LPS mutants, a single mutant designated lgt2 and a double mutant termed lgt2/lgt4, elaborating truncated inner core structures were generated in order to preclude expression of host-like outer core structures and to create an inner core structure that was shared by all three serotypes A, B and C of M. catarrhalis. Murine monoclonal antibodies (mAbs), designated MC2-1 and MC2-10 were obtained by immunising mice with the lgt2 mutant of M. catarrhalis serotype A strain. We showed that mAb MC2-1 can bind to the core LPS of wild-type (wt) serotype A, B and C organisms and concluded that mAb MC2-1 defines an immunogenic inner core epitope of M. catarrhalis LPS. We were unsuccessful in obtaining mAbs to the lgt2/lgt4 mutant. MAb MC2-10 only recognised the lgt2 mutant and the wt serotype A strain, and exhibited a strong requirement for the terminal N-acetyl-glucosamine residue of the lgt2 mutant core oligosaccharide, suggesting that this residue was immunodominant. Subsequently, we showed that both mAbs MC2-1 and MC2-10 could facilitate bactericidal killing of the lgt2 mutant, however neither mAb could facilitate bactericidal killing of the wt serotype A strain. We then confirmed and extended the candidacy of the inner core LPS by demonstrating that it is possible to elicit functional antibodies against M. catarrhalis wt strains following immunisation of rabbits with glycoconjugates elaborating the conserved inner core LPS antigen. The present study describes three conjugation strategies that either uses amidases produced by Dictyostelium discoideum, targeting the amino functionality created by the amidase activity as the attachment point on the LPS molecule, or a strong base treatment to remove all fatty acids from the LPS, thus creating amino functionalities in the lipid A region to conjugate via maleimide-thiol linker strategies targeting the carboxyl residues of the carrier protein and the free amino functionalities of the derived lipid A region of the carbohydrate resulted in a high loading of carbohydrates per carrier protein from these carbohydrate preparations. Immunisation derived antisera from rabbits recognised fully extended M. catarrhalis LPS and whole cells. Moreover, bactericidal activity was demonstrated to both the immunising carbohydrate antigen and importantly to wt cells, thus further supporting the consideration of inner core LPS as a potential vaccine antigen to combat disease caused by M. catarrhalis.


Moraxella catarrhalis LPS Core oligosaccharide Monoclonal antibody Conjugate vaccine 


  1. 1.
    Karalus, R., Campagnari, A.A.: Moraxella catarrhalis: a review of an important human mucosal pathogen. Microbes Infect. 2, 547–559 (2000)PubMedCrossRefGoogle Scholar
  2. 2.
    Murphy, T.F.: Vaccine development for non-typable Haemophilus influenzae and Moraxella catarrhalis: progress and challenges. Expert Rev. Vaccin. 4, 843–853 (2005)CrossRefGoogle Scholar
  3. 3.
    Murphy, T.F., Brauer, A.L., Grant, B.J., Sethi, S.: Moraxella catarrhalis in chronic obstructive pulmonary disease. Burden of disease and immune response. Am. J. Respir. Crit. Care Med. 172, 195–199 (2005)PubMedCrossRefGoogle Scholar
  4. 4.
    Brixner, D.I.: Improving acute otitis media outcomes through proper antibiotic use and adherence. Am. J. Manag. Care 11, S202–S210 (2005)PubMedGoogle Scholar
  5. 5.
    Mawas, F., Ho, M.M., Corbel, M.J.: Current progress with Moraxella catarrhalis as vaccine antigens. Expert Rev. Vaccin. 8, 77–90 (2009)CrossRefGoogle Scholar
  6. 6.
    Masoud, H., Perry, M.B., Brisson, J.-R., Uhrin, D., Richards, J.C.: Structural elucidation of the backbone oligosaccharide from the lipopolysaccharide of Moraxella catarrhalis serotype A. Can. J. Chem. 72, 1466–1477 (1994)CrossRefGoogle Scholar
  7. 7.
    Edebrink, P., Jansson, P.-E., Widmalm, G., Holme, T., Rahman, M.: The structures of oligosaccharides isolated from the lipopolysaccharide of Moraxella catarrhalis serotype B, strain CCUG 3292. Carbohydr. Res. 295, 127–146 (1996)PubMedGoogle Scholar
  8. 8.
    Edebrink, P., Jansson, P.-E., Rahman, M.M., Widmalm, G., Holme, T., Rahman, M.: Structural studies on the O-antigen oligosaccharides from two strains of Moraxella catarrhalis serotype C. Carbohydr. Res. 266, 237–261 (1995)PubMedCrossRefGoogle Scholar
  9. 9.
    Plested, J.S., Makepeace, K., Jennings, M.P., Gidney, M.A., Lacelle, S., Brisson, J.-R., Cox, A.D., Martin, A., Bird, R.G., Tang, C.M., Mackinnon, F., Richards, J.C., Moxon, E.R.: Conservation and accessibility of an inner core lipopolysaccharide epitope of Neisseria meningitidis. Infect. Immun. 67, 5417–5426 (1999)PubMedGoogle Scholar
  10. 10.
    Cox, A.D., Zou, W., Gidney, M.A.J., Lacelle, S., Plested, J.S., Makepeace, K., Wright, J.C., Coull, P., Moxon, E.R., Richards, J.C.: Candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: developmental chemistry and investigation of immunological responses following immunisation of mice and rabbits. Vaccine 23, 5045–5054 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    Logan, S.M., Chen, W., Aubry, A., Gidney, M.A.J., Lacelle, S., St. Michael, F., Kuolee, R., Higgins, M., Neufeld, S., Cox, A.D.: Production of a D-glycero-D-manno-heptosyltransferase mutant of Mannheimia haemolytica displaying a veterinary pathogen specific conserved LPS structure and development and cross-reactivity of antibodies to this LPS structure. Vet. Microbiol. 116, 175–186 (2006)PubMedCrossRefGoogle Scholar
  12. 12.
    Peak, I.R., Grice, I.D., Faglin, I., Klipic, Z., Collins, P.M., van Schendel, L., Hitchen, P.G., Morris, H.R., Dell, A., Wilson, J.C.: Towards understanding the functional role of the glycosyltransferases involved in the biosynthesis of Moraxella catarrhalis lipooligosaccharide. FEBS J. 274, 2024–2037 (2007)PubMedCrossRefGoogle Scholar
  13. 13.
    Gu, X.X., Chen, J., Barenkamp, S.J., Robbins, J.B., Tsai, C.-M., Lim, D.J., Battey, J.: Synthesis and characterization of lipopolysaccharide based conjugates as vaccine candidates for Moraxella catarrhalis. Infect. Immun. 66, 1891–1897 (1998)PubMedGoogle Scholar
  14. 14.
    Hu, W.-G., Chen, J., Battey, J.F., Gu, X.X.: Enhancement of clearance of bacteria from murine lungs by immunization with detoxified lipopolysaccharide from Moraxella catarrhalis conjugated to proteins. Infect. Immun. 68, 4980–4985 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    Jiao, X., Hirano, T., Hou, Y., Gu, X.X.: Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipopolysaccharide conjugate vaccine. Infect. Immun. 70, 5982–5989 (2002)PubMedCrossRefGoogle Scholar
  16. 16.
    Hu, W.-G., Berry, J., Chen, J., Gu, X.X.: Exploration of Moraxella catarrhalis outer membrane proteins, CD and UspA, as new carriers for lipopolysaccharide-based conjugates. FEMS Immunol. Med. Microbiol. 41, 109–115 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    Yu, S., Gu, X.X.: Synthesis and characterization of lipopolysaccharide-based conjugate vaccines for serotype B Moraxella catarrhalis. Infect. Immun. 73, 2790–2796 (2005)PubMedCrossRefGoogle Scholar
  18. 18.
    Yu, S., Gu, X.X.: Biological and immunological characteristics of lipopolysaccharide-based conjugate vaccines for serotype C Moraxella catarrhalis. Infect. Immun. 75, 2974–2980 (2007)PubMedCrossRefGoogle Scholar
  19. 19.
    Yu, S., Xie, H., Datta, A., Naidu, N., Gu, X.X.: Galactose residues on the lipopolysaccharide of Moraxella catarrhalis 26404 form the epitope recognized by the bactericidal antiserum from conjugate vaccination. Infect. Immun. 76, 4251–4258 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Westphal, O., Jann, K.: Bacterial lipopolysaccharide. Methods Carbohydr. Chem. 5, 88–91 (1965)Google Scholar
  21. 21.
    Sawardeker, D.G., Sloneker, J.H., Jeanes, A.: Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal. Chem. 37, 1602–1604 (1965)CrossRefGoogle Scholar
  22. 22.
    Ciucanu, I., Kerek, F.: A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131, 209–217 (1994)CrossRefGoogle Scholar
  23. 23.
    Cox, A.D., Li, J., Brisson, J.-R., Moxon, E.R., Richards, J.C.: Structural analysis of the lipopolysaccharide from Neisseria meningitidis strain BZ157 galE: localisation of two phosphoethanolamine residues in the inner core oligosaccharide. Carbohydr. Res. 337, 1435–1444 (2002)PubMedCrossRefGoogle Scholar
  24. 24.
    Furano, K., Campagnari, A.A.: Inactivation of the Moraxella catarrhalis 7169 ferric uptake regulator increases susceptibility to the bactericidal activity of normal human sera. Infect. Immun. 71, 1843–1848 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    Juni, E.: Genetic transformation assays for identification of strains of Moraxella urethralis. J. Clin. Microbiol. 5, 227–235 (1977)PubMedGoogle Scholar
  26. 26.
    Claviez, M., Pagh, K., Maruta, H., Baltes, W., Fisher, P., Gerisch, G.: Electron microscopic mapping of monoclonal antibodies on the tail region of Dictyostelium myosin. EMBO J. 1, 1017–1022 (1982)PubMedGoogle Scholar
  27. 27.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)PubMedCrossRefGoogle Scholar
  28. 28.
    Schwingel, J.M., Edwards, K.J., Cox, A.D., Masoud, H., Richards, J.C., St. Michael, F., Tekwe, C.D., Sethi, S., Murphy, T.F., Campagnari, A.A.: The use of Moraxella catarrhalis lipooligosaccharide mutants to identify specific oligosaccharide epitopes recognized by human serum antibodies. Infect. Immun. 77, 4548–4558 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    Oishi, K., Tanaka, H., Sonoda, F., Borann, S., Ahmed, K., Utsonomiya, Y., Watanabe, K., Nagatake, T., Vaneechoutte, M., Verschraegen, G., Matsumoto, K.: A monoclonal antibody reactive with a common epitope of Moraxella (Branhamella) catarrhalis lipopolysaccharide. Clin. Diagn. Lab. Immunol. 3, 351–354 (1996)PubMedGoogle Scholar
  30. 30.
    Rahman, M., Jonsson, A.-B., Holme, T.: Monoclonal antibodies to the epitope α-Gal-(1–4)-β-Gal-(1- of Moraxella catarrhalis LPS react with a similar epitope in type IV pili of Neisseria meningitidis. Microb. Pathog. 24, 299–308 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    Hu, W.-G., Chen, J., McMichael, J.C., Gu, X.X.: Functional characteristics of a protective monoclonal antibody against serotype A and C lipooligosaccharides from Moraxella catarrhalis. Infect. Immun. 69, 1358–1363 (2001)PubMedCrossRefGoogle Scholar
  32. 32.
    Cox, A.D., StMichael, F., Neelamegan, D., Lacelle, S., Cairns, C.M., Richards, J.C.: Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: chemical strategies to prepare glycoconjugates with good carbohydrate loading. Glycoconj. J. 27, 401–417 (2010)PubMedCrossRefGoogle Scholar
  33. 33.
    Bartoloni, A., Norelli, F., Ceccarini, C., Rappuoli, R., Costantino, P.: Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide. Vaccine 13, 463–470 (1995)PubMedCrossRefGoogle Scholar
  34. 34.
    Peeters, J.M., Hazendonk, T.G., Beuvery, E.C., Tesser, G.I.: Comparison of four bifunctional reagents for coupling peptides to proteins and the effect of the three moieties on the immunogenicity of the conjugates. J. Immunol. Methods 120, 133–143 (1989)PubMedCrossRefGoogle Scholar
  35. 35.
    Verez-Bencomo, V., Fernández-Santana, V., Hardy, E., Toledo, M.E., Rodríguez, M.C., Heynngnezz, L., et al.: A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type B. Science 305, 522–525 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    Torano, G., Toledo, M.E., Baly, A., Fernandez-Santana, V., Rodriguez, F., Alvarez, Y., et al.: Phase I clinical evaluation of a synthetic oligosaccharide-protein conjugate vaccine against Haemophilus influenzae type B in human adult volunteers. Clin. Vaccine Immunol. 13, 1052–1056 (2006)PubMedCrossRefGoogle Scholar
  37. 37.
    Fomsgaard, A., Freudenberg, M.A., Galanos, C.: Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J. Clin. Microbiol. 28, 2627–2631 (2000)Google Scholar
  38. 38.
    Ren, D., Yu, S., Gao, S., Peng, D., Petralia, R.S., Muszynski, A., Carlson, R.W., Robbins, J.B., Tsai, C.-M., Lim, D.J., and Gu, X.-X. Mutant lipooligosaccharide-based glycoconjugate vaccine demonstrates a broad-spectrum effectiveness against Moraxella catarrhalis. Vaccine (2011). doi:10.1016/j.vaccine.2011.03.102

Copyright information

© Her Majesty The Queen in Right of Canada 2011

Authors and Affiliations

  • Andrew D. Cox
    • 1
  • Frank St. Michael
    • 1
  • Chantelle M. Cairns
    • 1
  • Suzanne Lacelle
    • 1
  • Amy Lea Filion
    • 1
  • Dhamodharan Neelamegan
    • 1
  • Cory Q. Wenzel
    • 1
  • Heather Horan
    • 1
  • James C. Richards
    • 1
  1. 1.Institute for Biological SciencesNational Research CouncilOttawaCanada

Personalised recommendations