Glycoconjugate Journal

, Volume 27, Issue 7–9, pp 685–695 | Cite as

Involvement of murine β-1,4-galactosyltransferase V in lactosylceramide biosynthesis

  • Tadahiro Kumagai
  • Takeshi Sato
  • Shunji Natsuka
  • Yukito Kobayashi
  • Dapeng Zhou
  • Tadashi Shinkai
  • Satoru Hayakawa
  • Kiyoshi FurukawaEmail author


Human β-1,4-galactosyltransferase (β-1,4-GalT) V was shown to be involved in the biosynthesis of N-glycans, O-glycans and lactosylceramide (Lac-Cer) by in vitro studies. To determine its substrate specificity, enzymatic activity and its products were analyzed using mouse embryonic fibroblast (MEF) cells from β-1,4-GalT V (B4galt5)-mutant mice. Analysis of expression levels of the β-1,4-GalT I-VI genes revealed that the expression of the β-1,4-GalT V gene in B4galt5 +/− - and B4galt5 −/− -derived MEF cells are a half and null when compared to that of B4galt5 +/+ -derived MEF cells without altering the expression levels of other β-1,4-GalT genes. These MEF cells showed no apparent difference in their growth. When β-1,4-GalT activities were determined towards GlcNAcβ-S-pNP, no significant difference in its specific activity was obtained among B4galt5 +/+ -, B4galt5 +/− - and B4galt5 −/− -derived MEF cells. No significant differences were obtained in structures and amounts of N-glycans and lectin bindings to membrane glycoproteins among B4galt5 +/+ -, B4galt5 +/− - and B4galt5 −/− -derived MEF cells. However, when cell homogenates were incubated with glucosylceramide in the presence of UDP-[3H]Gal, Lac-Cer synthase activity in B4galt5 +/− - and B4galt5 −/− -derived MEF cells decreased to 41% and 11% of that of B4galt5 +/+ -derived MEF cells. Consistent with this, amounts of Lac-Cer and its derivative GM3 in B4galt5 −/− -derived MEF cells decreased remarkably when compared with those of B4galt5 +/+ -derived MEF cells. These results indicate that murine β-1,4-GalT V is involved in Lac-Cer biosynthesis.


B4galt5−/− mice MEF cells β-1,4-GalT V Lactosylceramide 





β-1,4-GalT V gene


Coomassie Brilliant Blue

Con A

Concanavalin A








Glucose unit




High performance liquid chromatography




Maackia amurensis agglutinin


Mouse embryonic fibroblast


2-(N-morpholino)ethansulfonic acid


N-acetylneuraminic acid




10 mM phosphate-buffered saline (pH 7.4)


Peanut agglutinin


Ricinus communis agglutinin-I


Reverse transcription-polymerase chain reaction


Sambucus nigra agglutinin


Thin-layer chromatography



This work was supported by Grants-in-Aid for Scientific Research (09240104, 12680708 and 22370048) from the Ministry of Education, Science, Culture and Sports of Japan, and the Research Promotion Fund from the Japan Science Technology Agency (2007-2009) to KF.


  1. 1.
    Svennerholm, L.: Designation and schematic structure of gangliosides and allied glycosphingolipids. Prog Brain Res 101, 11–14 (1994)Google Scholar
  2. 2.
    Surani, M.A.: Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos and compaction and trophoblast adhesion. Cell 18, 217–227 (1979)CrossRefPubMedGoogle Scholar
  3. 3.
    Gooi, H.C., Feizi, T., Kapadia, A., Knowles, B.B., Solter, D., Evans, M.J.: Stage-specific embryonic antigen involves α1→3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981)CrossRefPubMedGoogle Scholar
  4. 4.
    Schnaar, R.L.: Glycosphingolipids in cell surface recognition. Glycobiology 1, 477–485 (1991)CrossRefPubMedGoogle Scholar
  5. 5.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)CrossRefPubMedGoogle Scholar
  6. 6.
    Nomura, K.H., Kobayashi, R., Hirabayashi, Y., Fujisue-Sasaki, M., Mizuguchi, S., Nomura, K.: Involvement of blood group-B-active trisaccharides in Ca2+-dependent cell-to-cell adhesion in the Xenopus blastula. Dev Genes Evol 208, 9–18 (1998)CrossRefPubMedGoogle Scholar
  7. 7.
    Metzler, M., Gertz, A., Sarkar, M., Schachter, H., Schrader, J.W., Marth, J.D.: Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J 13, 2056–2065 (1994)PubMedGoogle Scholar
  8. 8.
    Ioffe, E., Stanley, P.: Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 91, 728–732 (1994)CrossRefPubMedGoogle Scholar
  9. 9.
    Asano, M., Furukawa, K., Kido, M., Matsumoto, S., Umesaki, Y., Kochibe, N., Iwakura, Y.: Growth retardation and early death of β-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 16, 1850–1857 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    Lu, Q., Hasty, P., Shur, B.D.: Targeted mutation in β1, 4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev Biol 181, 257–267 (1997)CrossRefPubMedGoogle Scholar
  11. 11.
    Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., Proia, R.L.: A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96, 9142–9147 (1999)CrossRefPubMedGoogle Scholar
  12. 12.
    Xia, L., Ju, T., Westmuckett, A., An, G., Ivanciu, L., McDaniel, J.M., Lupu, F., Cummings, R.D., McEver, R.P.: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164, 451–459 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Habuchi, H., Nagai, N., Sugaya, N., Atsumi, F., Stevens, R.L., Kimata, K.: Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. J Biol Chem 282, 15578–15588 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Kumagai, T., Tanaka, M., Yokoyama, M., Sato, T., Shinkai, T., Furukawa, K.: Early letharity of β-1,4-galactosyltransferase V-mutant mice by growth retardation. Biochem Biophys Res Commun 379, 456–459 (2009)CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshihara, T., Sugihara, K., Kizuka, Y., Oka, S., Asano, M.: Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in β4-galactosyltransferase-II-deficient mice. J Biol Chem 284, 12550–12561 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    Biellmann, F., Hulsmeier, A.J., Zhou, D., Cinelli, P., Hennet, T.: The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev Biol 8, 109 (2008)CrossRefPubMedGoogle Scholar
  17. 17.
    Furukawa, K., Takamiya, K., Okada, M., Inoue, M., Fukumoto, S., Furukawa, K.: Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim Biophys Acta 1525, 1–12 (2001)PubMedGoogle Scholar
  18. 18.
    Furukawa, K., Kobata, A.: Cell surface carbohydrates-their involvement in cell adhesion. In: Ogura, H., Hasegawa, A., Suami, T. (eds.) Carbohydrates Synthetic Methods and Application in Medicinal Chemistry, pp. 369-384. Kodansha, Tokyo (1992)Google Scholar
  19. 19.
    Chatterjee, S., Pandey, A.: The Yin and Yang of lactosylceramide metabolism: implications in cell function. Biochim Biophys Acta 1780, 370–382 (2008)PubMedGoogle Scholar
  20. 20.
    Furukawa, K., Sato, T.: β-1,4-galactosylation of N-glycans is a complex process. Biochim Biophys Acta 1473, 54–66 (1999)PubMedGoogle Scholar
  21. 21.
    Sato, T., Furukawa, K., Bakker, H., Van den Eijnden, D.H., Van Die, I.: Molecular cloning of a human cDNA encoding β-1,4-galactosyltransferase with 37% identity to mammalian UDP-Gal:GlcNAc β-1,4-galactosyltransferase. Proc Natl Acad Sci USA 95, 472–477 (1998)CrossRefPubMedGoogle Scholar
  22. 22.
    Van Die, I., Van Tetering, A., Schiphorst, W.E.C.M., Sato, T., Furukawa, K., Van den Eijnden, D.H.: The acceptor substrate specificity of human β4-galactosyltransferase V indicates its potential function in O-glycosylation. FEBS Lett 450, 52–56 (1999)CrossRefPubMedGoogle Scholar
  23. 23.
    Almeida, R., Amado, M., David, L., Levery, S.B., Holmes, E.H., Merkx, G., van Kessel, A.G., Rygaard, E., Hassan, H., Bennett, E., Clausen, H.: A family of human β4-galactosyltransferases. J Biol Chem 272, 31979–31991 (1997)CrossRefPubMedGoogle Scholar
  24. 24.
    Schwientek, T., Almeida, R., Levery, S.B., Holmes, E.H., Bennett, E., Clausen, H.: Cloning of a novel member of the UDP-galactose:β-N-acetylglucosamine β1,4-galactosyltransferase family, β4Gal-T4, involved in glycosphingolipid biosynthesis. J Biol Chem 273, 29331–29340 (1998)CrossRefPubMedGoogle Scholar
  25. 25.
    Nomura, T., Takizawa, M., Aoki, J., Arai, H., Inoue, K., Wakisaka, E., Yoshizuka, N., Imokawa, G., Dohmae, N., Takio, K., Hattori, M., Matsuo, N.: Purification, cDNA cloning, and expression of UDP-Gal:glucosylceramide β-1,4-galactosyltransferase from rat brain. J Biol Chem 273, 13570–13577 (1998)CrossRefPubMedGoogle Scholar
  26. 26.
    Yoshimi, Y., Sato, T., Ikekita, M., Guo, S., Furukawa, K.: Presence of monoantennary complex-type and hybrid-type oligosaccharides terminated with β-N-acetylglucosamine in lepidopteran insect Sf-9 cells. Res Commun Biochem Cell Molec Biol 4, 163–170 (2000)Google Scholar
  27. 27.
    Baenziger, J.U., Fiete, D.: Structural determination of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem 254, 9795–9799 (1979)PubMedGoogle Scholar
  28. 28.
    Guo, S., Sato, T., Shirane, K., Furukawa, K.: Galactosylation of N-linked oligosaccharides by human β-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 11, 813–820 (2001)CrossRefPubMedGoogle Scholar
  29. 29.
    Nakamura, N., Yamakawa, N., Sato, T., Tojo, H., Tachi, C., Furukawa, K.: Differential gene expression of β-1,4-galactosyltransferases I, II and V during mouse brain development. J Neurochem 76, 29–38 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Sato, T., Guo, S., Furukawa, K.: Involvement of recombinant human β-1,4 galactosyltransferase V in lactosylceramide biosynthesis. Res Commun Biochem Cell Molec Biol 4, 3–10 (2000)Google Scholar
  31. 31.
    Takasaki, S., Mizuochi, T., Kobata, A.: Hydrazinolysis of asparaginelinked sugar chains to produce free oligosaccharides. Methods Enzymol 83, 263–268 (1982)CrossRefPubMedGoogle Scholar
  32. 32.
    Hase, S., Ikenaka, T., Matsushima, Y.: Structural analysis of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun 85, 257–263 (1978)CrossRefPubMedGoogle Scholar
  33. 33.
    Yanagida, K., Ogawa, H., Omichi, K., Hase, S.: Introduction of new scale into reversed-phase high-performance liquid chromatography of pyridylamino sugar chains for structural assignment. J Chromatogr 800, 187–198 (1998)CrossRefGoogle Scholar
  34. 34.
    Sato, T., Furukawa, K., Greenwalt, D.E., Kobata, A.: Most bovine milk fat globule membrane glycoproteins contain asparagine linked sugar chain with GalNAcβ1→4GlcNAc groups. J Biochem (Tokyo) 117, 890–900 (1993)Google Scholar
  35. 35.
    Ando, S., Waki, H., Kon, K.: New solvent system for high-performance thin-layer chromatography and high-performance liquid chromatography of gangliosides. J Chromatogr 405, 125–134 (1987)CrossRefPubMedGoogle Scholar
  36. 36.
    Li, Y., Thapa, P., Hawke, D., Kondo, Y., Furukawa, K., Furukawa, K., Hsu, F.-F., Aldercreutz, D., Weadge, J., Palcic, M.M., Wang, P.G., Levery, S.B., Zhou, D.: Immunologic glycoshingolipidomics and NKT cell development in mouse thymus. J Proteome Res 8, 2740–2751 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    Guo, H.B., Nairn, A., Harris, K., Randolph, M., Alvarez-Manilla, G., Moremen Pierce, M.: Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins. FEBS Lett 582, 527–535 (2008)CrossRefPubMedGoogle Scholar
  38. 38.
    Natsuka, S., Adachi, J., Kawaguchi, M., Ichikawa, A., Ikura, K.: Method for purification of fluorescence-labeled oligosaccharides by pyridylamination. Biosci Biotechnol Biochem 66, 1174–1175 (2002)CrossRefPubMedGoogle Scholar
  39. 39.
    Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nshimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra) bark lectin recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence. J Biol Chem 262, 1596–1601 (1987)PubMedGoogle Scholar
  40. 40.
    Wang, W.C., Cummings, R.D.: The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α-2,3 to penultimate galactose residues. J Biol Chem 263, 4576–4585 (1988)PubMedGoogle Scholar
  41. 41.
    Ogata, S., Muramatsu, T., Kobata, A.: Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose. J Biochem (Tokyo) 78, 687–696 (1975)Google Scholar
  42. 42.
    Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycoproteins. Methods Enzymol 138, 232–259 (1987)CrossRefPubMedGoogle Scholar
  43. 43.
    Lotan, R., Skutelsky, E., Danon, D., Sharon, N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250, 8518–8523 (1975)PubMedGoogle Scholar
  44. 44.
    Nakazawa, K., Furukawa, K., Narimatsu, H., Kobata, A.: Kinetic study of human β-1,4-galactosyltransferase expressed in E. coli.. J Biochem (Tokyo) 113, 747–753 (1993)Google Scholar
  45. 45.
    Regina-Todeschini, A., Hakomori, S.: Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780, 421–433 (2008)PubMedGoogle Scholar
  46. 46.
    Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., Sandhoff, R., Sandhoff, K., Proia, R.L.: Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 100, 3445–3449 (2003)CrossRefPubMedGoogle Scholar
  47. 47.
    Okuda, T., Tokuda, N., Numata, S., Ito, M., Ohta, M., Kawamura, K., Wiels, J., Urano, T., Tajima, O., Furukawa, K., Furukawa, K.: Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281, 10230–10232 (2006)CrossRefPubMedGoogle Scholar
  48. 48.
    Kawakami, Y., Kawakami, K., Steelant, W.F., Ono, M., Baek, R.C., Handa, K., Withers, D.A., Hakomori, S.: Tetraspanin CD9 is a “proteolipid,” and its interaction with α3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem 277, 34349–34358 (2002)CrossRefPubMedGoogle Scholar
  49. 49.
    Mitsuzuka, K., Handa, K., Satoh, M., Arai, Y., Hakomori, S.: A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of α3β1 integrin with CD9. J Biol Chem 280, 35545–35553 (2005)CrossRefPubMedGoogle Scholar
  50. 50.
    Yoon, S.J., Nakayama, K., Hikita, T., Handa, K., Hakomori, S.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 50, 18987–18991 (2005)Google Scholar
  51. 51.
    Harburger, D.S., Calderwood, D.A.: Integrin signalling at a glance. J Cell Sci 122, 159–163 (2009)CrossRefPubMedGoogle Scholar
  52. 52.
    Xu, W., Baribault, H., Adamson, E.D.: Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998)PubMedGoogle Scholar
  53. 53.
    Monkley, S.J., Zhou, X.H., Kinston, S.J., Giblett, S.M., Hemmings, L., Priddle, H., Brown, J.E., Pritchard, C.A., Critchley, D.R., Fässler, R.: Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 219, 560–574 (2000)CrossRefPubMedGoogle Scholar
  54. 54.
    Hagel, M., George, E.L., Kim, A., Tamimi, R., Opitz, S.L., Turner, C.E., Imamoto, A., Thomas, S.M.: The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22, 901–915 (2002)CrossRefPubMedGoogle Scholar
  55. 55.
    Ilić, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., Yamamoto, T.: Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995)CrossRefPubMedGoogle Scholar
  56. 56.
    Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Furukawa, K., Aizawa, S.: Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93, 10662–10667 (1996)CrossRefPubMedGoogle Scholar
  57. 57.
    Sheikh, K.A., Sun, J., Liu, Y., Kawai, H., Crawford, T.O., Proia, R.L., Griffin, J.W., Schnaar, R.L.: Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96, 7532–7537 (1999)CrossRefPubMedGoogle Scholar
  58. 58.
    Kawai, H., Allende, M.L., Wada, R., Kono, M., Sango, K., Deng, C., Miyakawa, T., Crawley, J.N., Werth, N., Bierfreund, U., Sandhoff, K., Proia, R.L.: Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276, 6885–6888 (2001)CrossRefPubMedGoogle Scholar
  59. 59.
    Okada, M., Itoh, M., Haraguchi, M., Okajima, T., Inoue, M., Oishi, H., Matsuda, Y., Iwamoto, T., Kawano, T., Fukumoto, S., Miyazaki, H., Furukawa, K., Aizawa, S., Furukawa, K.: b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277, 1633–1636 (2002)CrossRefPubMedGoogle Scholar
  60. 60.
    Okuda, T., Tokuda, N., Numata, S., Ito, M., Ohta, M., Kawamura, K., Wiels, J., Urano, T., Tajima, O., Furukawa, K., Furukawa, K.: Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281, 10230–10232 (2006)CrossRefPubMedGoogle Scholar
  61. 61.
    Porubsky, S., Speak, A.O., Luckow, B., Cerundolo, V., Platt, F.M., Gröne, H.: Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci USA 104, 5977–5982 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tadahiro Kumagai
    • 1
  • Takeshi Sato
    • 1
  • Shunji Natsuka
    • 2
  • Yukito Kobayashi
    • 1
  • Dapeng Zhou
    • 3
  • Tadashi Shinkai
    • 4
  • Satoru Hayakawa
    • 4
  • Kiyoshi Furukawa
    • 1
    Email author
  1. 1.Laboratory of Glycobiology, Department of BioengineeringNagaoka University of TechnologyNiigataJapan
  2. 2.Department of Biology, Faculty of ScienceNiigata UniversityNiigataJapan
  3. 3.Department of Melanoma Medical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Department of Cell BiologyTokyo Metropolitan Institute of GerontologyTokyoJapan

Personalised recommendations